
Galaxy clustering and Galactic extinction map

Yasushi Suto Department of Physics, University of Tokyo

The Universi

Nottingham

School of Physics & Astronomy

Oct. 29, 2007 seminar@

Recent work of Observational Cosmology Group, University of Tokyo (1)

Dark halos and galaxy clusters

- triaxial modeling of dark matter halos (Jing & Suto 2002; Oguri, Lee & Suto 2003; Lee, Jing & Suto 2005)
- Systematic bias of cluster temperature and H₀ from the SZ effect (Kawahara et al. 2006, 2007)

Warm/hot intergalactic medium (WHIM)

- a proposal of oxygen emission line search with DIOS (Yoshikawa et al. 2003, 2004)
- feasibility of an absorption line search with XEUS along bright quasars and GRB afterglow (Kawahara et al. 2006)

Spectroscopy of transiting extrasolar planets

- constraints on planetary atmosphere (Winn et al. 2004; Narita et al. 2005)
- detection of the spin-orbit misalignment using the Rossiter effect (Ohta, Taruya & Suto 2005, 2007; Winn et al. 2005, 2006, 2007; Narita et al. 2007)

Recent work of Observational Cosmology Group, University of Tokyo (2)

Large-scale structure of the universe

- Minkowski functionals and phase correlation of SDSS galaxies (Hikage et al. 2003,2004,2005)
- constraints on the deviation from Newton's law of gravity from SDSS galaxy power spectrum (Shirata et al. 2005, 2007)
- Prospects to constrain modified gravity models from future surveys (Yamamoto et al. 2006, 2007)
- Bispectrum and nonlinear biasing of galaxies (Nishimichi et al. 2007)
- Perturbation theory approach to baryon acoustic oscillations (Nishimichi et al. 2007)

 Galactic dust map against SDSS galaxy surface density (Yahata et al. 2007)

This talk is based on

The effect of FIR emission from SDSS galaxies on the SFD Galactic extinction map

K.Yahata, A.Yonehara, Y.Suto, E.L.Turner, T.Broadhurst, & D.P. Finkbeiner Publ.Astron.Soc.Japan 59(2007)205 astro-ph/0607098

Galactic dust extinction map

- The most fundamental and important map to calibrate all astronomical and cosmological observations
 - Without the map, you cannot tell true luminosity of any objects
 - Large-scale structure that you discover may not be real but simply reflect the Galactic dust distribution ...

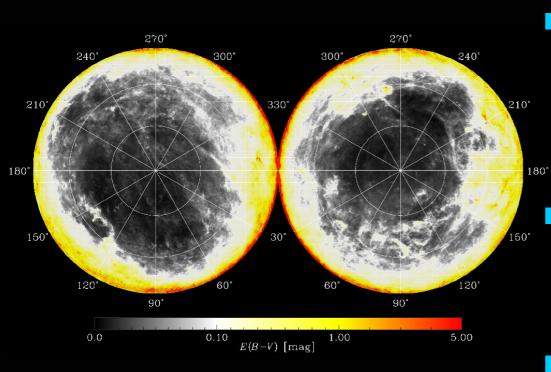
ADS citation list as of Jan.2007 (1)

1	□ 2003ApJS1481755 Spergel, D. N.; Verde, L.; Peiris, H. V.; Komatsu, E.; Nolta, M. R.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; and 7 coauthors	3715.000 09/2003 A E F X First-Year Wilkinson Microwave Anisotropy Probe (Determination of Cosmological Parameters WMAP 1 st year	<u>R</u> C (WMAP) (<u>S</u> <u>N</u> Observatio	<u>U</u> <u>H</u> ns:
2	□ <u>1981PhRvB23.5048P</u> Perdew, J. P.; Zunger, Alex	3694.000 05/1981 <u>E</u> Self-interaction correction to density-functional ap electron systems	<u>R</u> C proximati	ions for ma	U any-
3	☐ <u>1998ApJ500525S</u> Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc	3574.000 06/1998 <u>A</u> <u>E</u> <u>F</u> <u>X</u> Maps of Dust Infrared Emission for Use in Estimat Cosmic Microwave Background Radiation Foregrou SFD Galactic dust map		<u>S</u> ddening ar	U <u>H</u> nd
4	<u>1973A&A24337S</u> Shakura, N. I.; Sunyaev, R. A.	3446.000 00/1973 <u>A</u> <u>F</u> <u>G</u> Black holes in binary systems. Observational appe	<u>R</u> C arance.	<u>S</u>	<u>U</u> Н
5	□ <u>1989GeCoA53197A</u> Anders, E.; Grevesse, N.	3130.000 01/1989 <u>A</u> <u>E</u> Abundances of the elements - Meteoritic and solar	<u>C</u>		<u>U H</u>

ADS citation list as of Jan.2007 (2)

6	□ <u>1979ApJS401K</u> Kurucz, R. L.	2833.000 05/1979 <u>A</u> Model atmospheres for	<u>F</u> <u>G</u> G, F, A, B	3, and O s	<u>D</u> stars	<u>R</u> <u>C</u>	<u>S</u>	<u>o</u> <u>U</u>
7	D <u>1980PhRvL45566C</u> Ceperley, D. M.; Alder, B. J.	2754.000 08/1980 Ground state of the ele	<u>E</u> ectron gas	by a stor	chastic me	<u>R</u> C ethod		<u>U</u>
8	1999ApJ517565P 2672.000 06/1999 A E F X D R C S N U H Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R. A.; Nugent, P.; Castro, P. G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D. E.; and 23 coauthors 2672.000 06/1999 A E F X D R C S N U H							
9		2618.000 09/1998 A E F X D R C S N U H Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant Supernova cosmic acceleration						
10		2485.000 01/1981 Inflationary universe: A	<u>E</u> possible so	olution to		<u>R</u> <u>C</u> zon and f	flatness r	<u>U</u> <u>H</u> problems

ADS citation list as of Jan.2007 (3)


11	☐ <u>1989ApJ345245C</u> Cardelli, Jason A.; Clayton, Geoffrey C.; Mathis, John S.	2476.000 10/1989 <u>A</u> The relationship between Extinct		, optical, and ultra ifferent wav			<u>U</u> <u>H</u>
12	□ <u>1966ARA&A4193J</u> Johnson, Harold L.	2454.000 00/1966 Astronomical Measuren	<u>F</u> <u>G</u> nents in the	e Infrared	<u>R</u> <u>C</u>	<u>S</u>	U
13	□ <u>1992AJ104340L</u> Landolt, Arlo U.	2435.000 07/1992 <u>A</u> UBVRI photometric star the celestial equator	<u>F</u> <u>G</u> ndard stars	<u>D</u> in the magnitude	<u>R</u> C a range 1	<u>S</u> 11.5-16.0	O <u>U</u> H around
14	☐ <u>1999PhR∨L83.3370R</u> Randall, Lisa; Sundrum, Raman	2262.000 10/1999 <u>A</u> Large Mass Hierarchy f	<u>E</u> <u>F</u> rom a Smal	—	<u>R</u> <u>C</u>		<u>U</u> <u>H</u>
15	<u>1987PASP99191S</u> Stetson, Peter B.	2250.000 03/1987 <u>A</u> DAOPHOT - A compute	<u>F</u> <u>G</u> er program f	for crowded-field	<u>R</u> C stellar p	<u>S</u> hotometr	<u>U</u> <u>Н</u> у
16	☐ <u>1999PhR∨L83.4690R</u> Randall, Lisa; Sundrum, Raman	2148.000 12/1999 <u>A</u> An Alternative to Comp	<u>E</u> <u>F</u> pactification	X	<u>R</u> <u>C</u>		<u>U</u> <u>H</u>

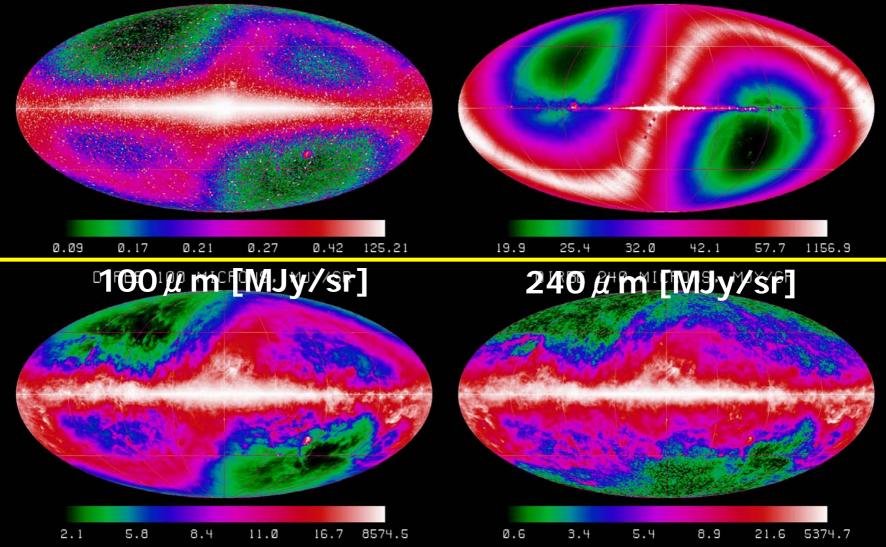
ADS citation list as of Jan.2007 (4)

17	□ <u>1955ApJ121161S</u> Salpeter, Edwin E.	2047.000 01/1955 <u>A</u> The Luminosity Funct	<u>F</u> <u>G</u> ion and Stellar Evolutio		<u>C</u>	<u>U</u> H
18	□ <u>1984ApJ28589D</u> Draine, B. T.; Lee, H. M.		Model of interation of the stellar graphite and		_	ОUН
19	□ <u>1990ARA&A28215D</u> Dickey, John M.; Lockman, Felix J.	1905.000 00/1990 <u>A</u> H I in the Galaxy	E G Galactic HI dis		<u>c</u> s ion	<u>U</u> H
20	□ <u>1979ARA&A1773S</u> Savage, B. D.; Mathis, J. S.	1884.000 00/1979 <u>A</u> Observed properties o	<u>F</u> <u>G</u> of interstellar dust Inters		<mark>c</mark> dust ol	<u>U</u> osevation
21	□ <u>1997ApJ490493N</u> Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M.	1813.000 12/1997 <u>A</u> A Universal Density P	<u>E F X</u> rofile from Hierarchical	<u>R</u>	<u>C</u>	<u>U</u> <u>H</u>
22	□ <u>1982AJ87.1165B</u> Burstein, D.; Heiles, C.	1799.000 08/1982 <u>A</u> Reddenings derived fi	BH Galactic rom H I and galaxy cou		• <u>•</u>	

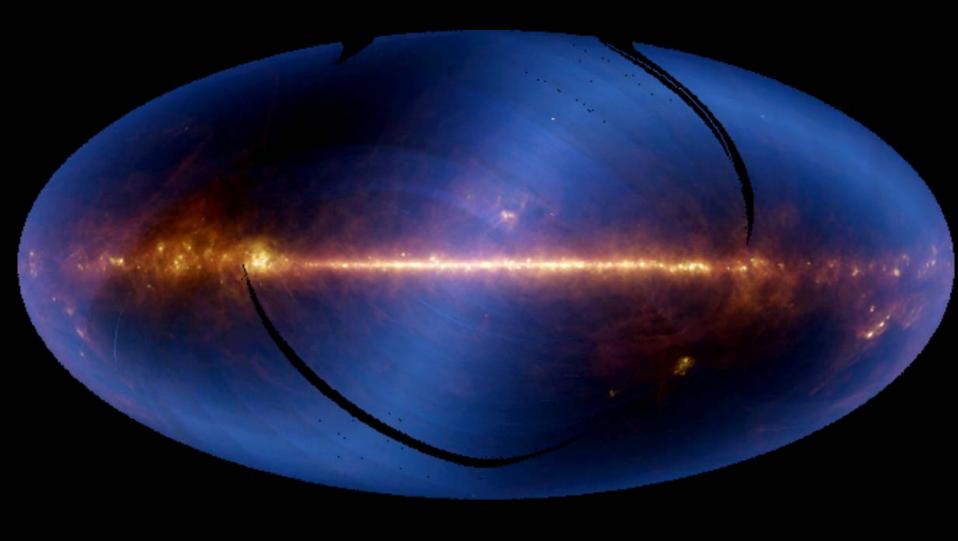
Parameter definitions Optical depth $I(\lambda) = I_0(\lambda) \exp[-\tau(\lambda)]$ Extinction $A(\lambda) = -2.5[\log I(\lambda) - \log I_0(\lambda)]$ $\approx 1.086 \tau(\lambda)$ O'donnell (1994) 2 $R_{\nu} = 2.3$ Color excess $4(\lambda)/A_{V}$ $E(\overline{B} - \overline{V}) = A_{\overline{B}} - \overline{A_{\overline{V}}}$ Extinction curve E(B-V) (= 3.1) R_{v} 3000 4000 6000 7000 8000 9000 5000 Wave length [Å]

SFD Galactic extinction map

Galactic extinction E(B-V) map by Schlegel, Finkbeiner & Davis (1998: SFD) dust extinction estimated from <u>FIR(100 µ m)</u> <u>emission</u>

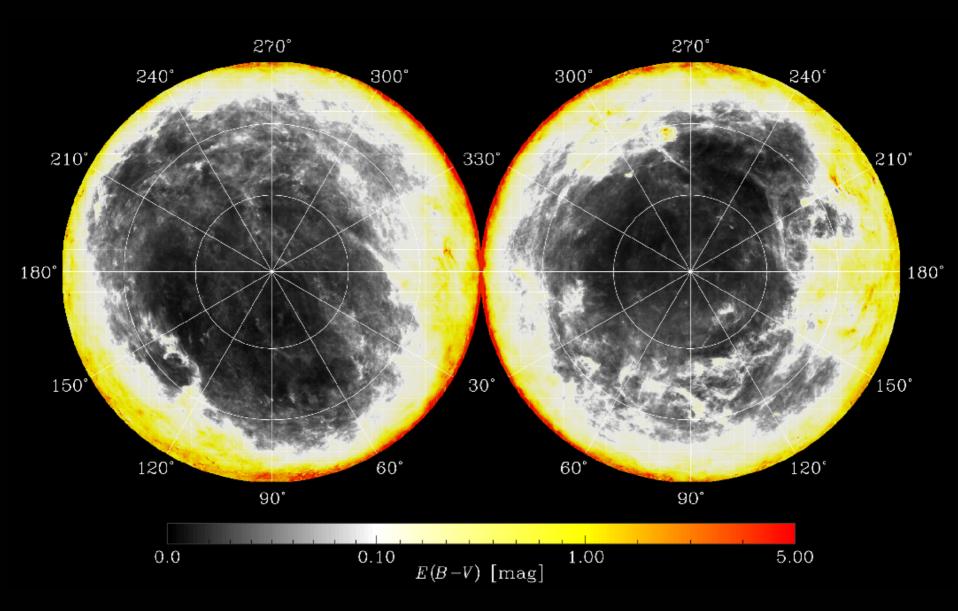

can be used for <u>absorption</u> <u>correction</u>???

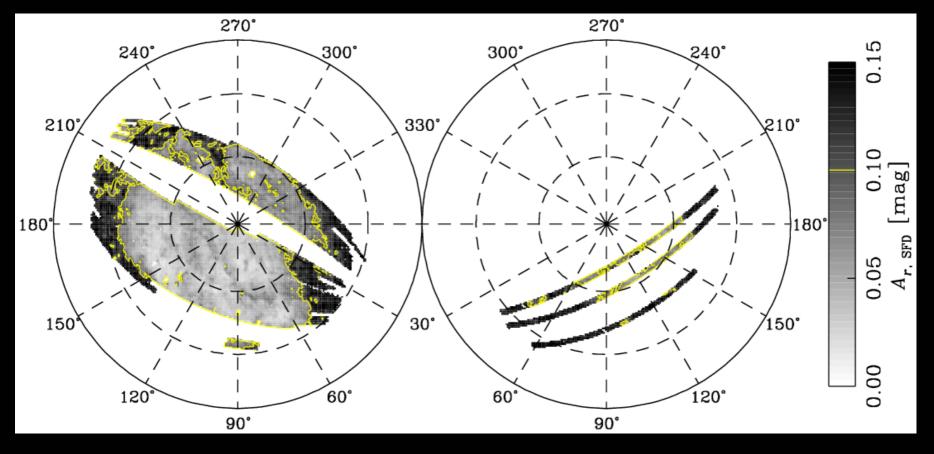
 independent consistency check is needed


COBE DIRBE maps

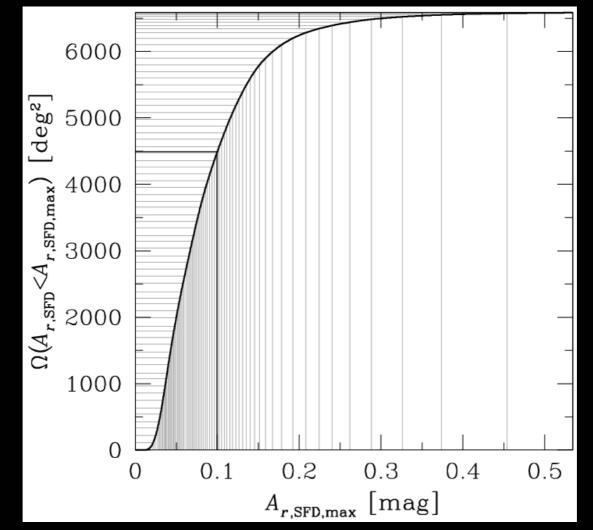
DIRBE 3.5 MICRONS, MJY/SR

DIRBE 25 MICRONS, MJY/SR


IRAS 100μ m map

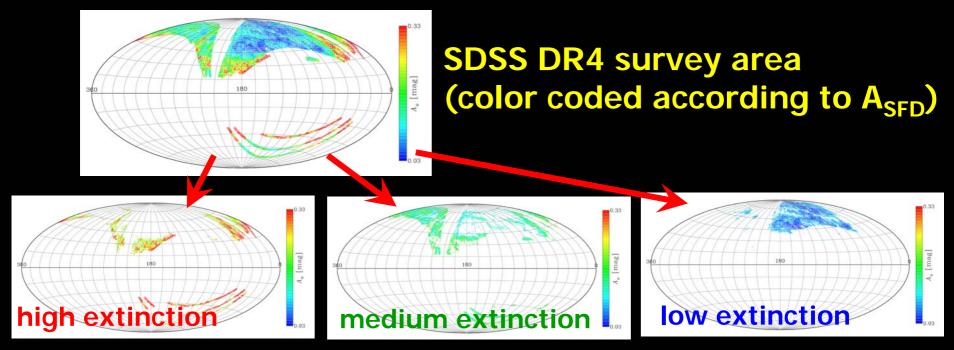

SFD method to create the extinction map

- 1. Remove zodiacal light and cosmic infrared background from COBE 100μ m+ 240μ m maps and create dust temperature map
- 2. Then create the temperature-dependent emissivity corrected $100 \,\mu$ m map
- 3. It is used to calibrate the higher angular-resolution IRAS 100 μ m map
- 4. Assume that $E(B-V) = p \times (100 \,\mu \text{ m flux})^T$ at each pixel of the map and determine p and T from the data
- 5. Convert E(B-V) to A_{band} adopting SED of ellipticals and the extinction curve A(λ) (with $R_V=3.1$)

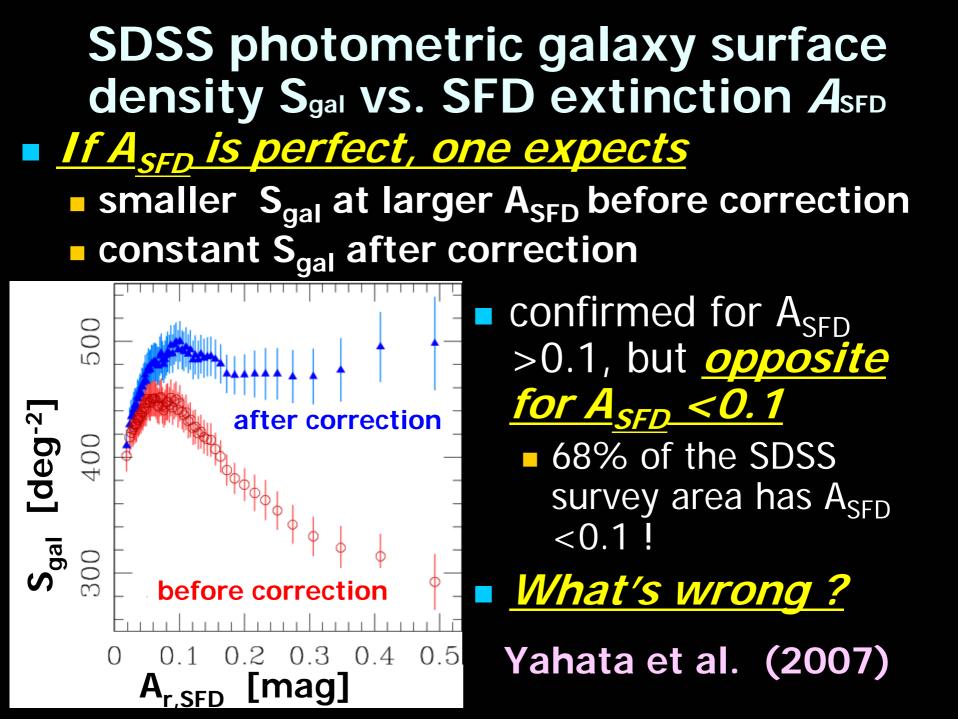

SFD E(B-V) map

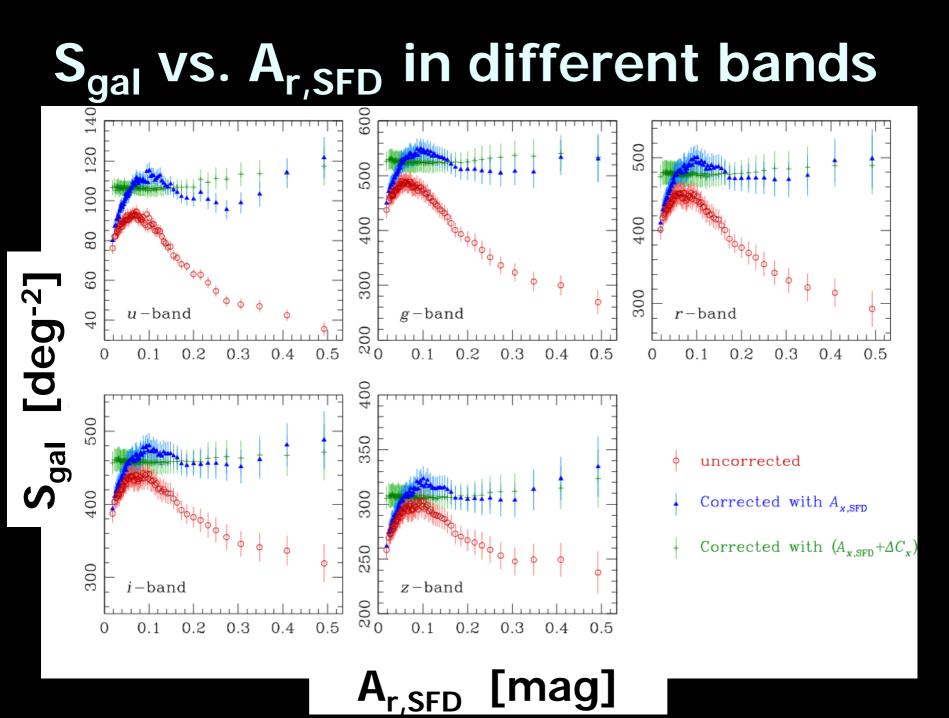
DR4 survey area vs. A_{SFD} SDSS DR4 photometric catalogue ~10⁷ galaxies, 6600 deg²

Cumulative distribution function of $A_{r,SFD}$


68 % of the survey area has $A_{r,SFD} < 0.1$ 30 % of the survey area has $A_{r,SFD} < 0.05$

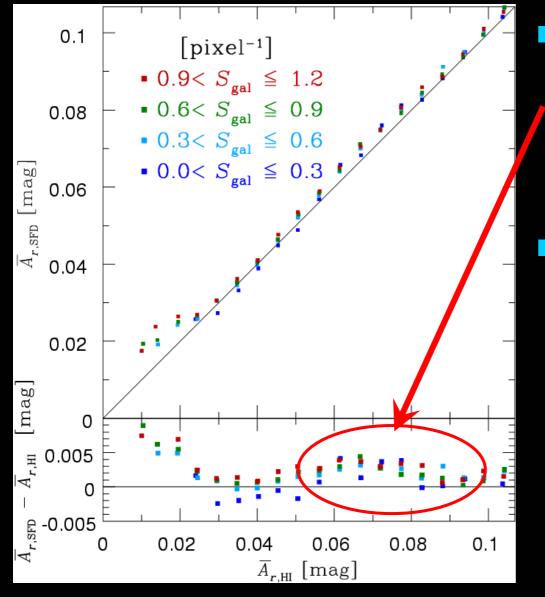
Effect of extinction on galaxy surface density




In reality, intrinsic clustering of galaxies exists ! ⇒ smoothing over large scales are needed to identify a possible systematic effect of the dust map

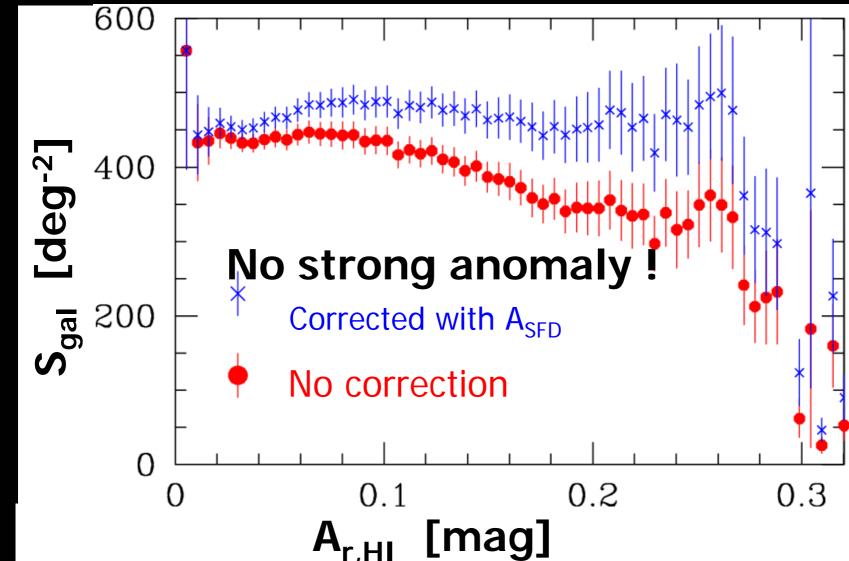
Estimating Galactic extinction from SDSS galaxy surface density

- divide the SDSS DR4 survey area into many small regions according to A_{SFD}
- combine those un-contiguous regions into 69 bins with ~100 deg² each
- compare the galaxy number density S_{gal} of a given magnitude range in different bands



Comparison with other SDSS data

- QSO results exhibit no anomaly
- Spectroscopic galaxy samples do show the similar anomaly
- stronger for the lower z sample (?)
- The anomaly can not explained by Galactic dust or IGM, but should be related to galaxies themselves.


A_{r,SFD} VS. A_{HI} from HI (21cm) map

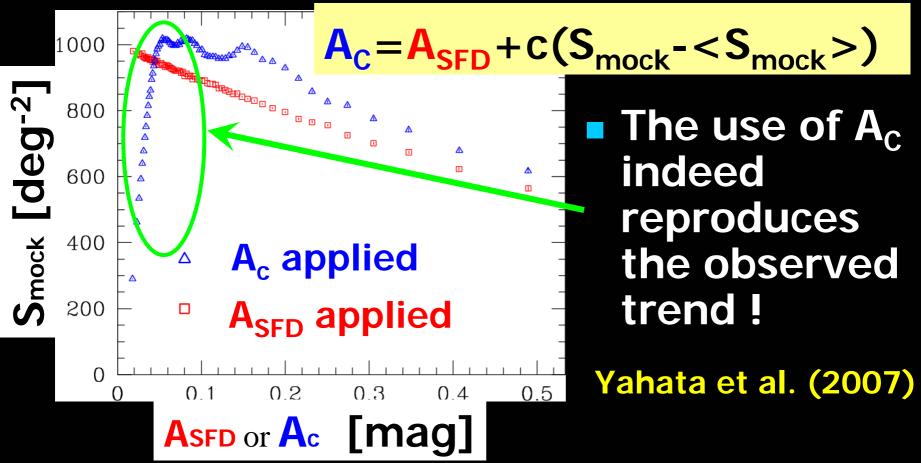
 $A_{SFD} > A_{HI}$ for $A_{SFD} < 0.1$ Feature at A_{SFD} < 0.02 is an artifact due to binning effect stronger trend for larger S_{gal} regions Again indicating the extragalactic origin (21cm comes from galactic clouds)

Yahata et al. (2007)

SDSS galaxy surface density Sgal vs. HI extinction Ahi

Origin of the anomaly ?

• A_{SFD} is estimated assuming that the reddening is proportional to the Far-infrared emission flux (100 μ m)


the anomaly indicates the positive correlation between galaxy surface density and the FIR flux at least where the real extinction is small

• 100 μ m flux = Galactic dust + FIR from galaxies

contamination by the FIR emission from galaxies ???

A simulation to test our hypothesis

- Poisson distributed galaxies in each pixel over the entire survey area
 - <u>assume that</u> A_{SFD} = true Galactic extinction, and <u>add</u> galaxy FIR contribution according to

Tiny but systematic error in A_{SFD}

a typical amplitude of the systematic error in A_{SFD} is ~0.01mag

c.f., mean flux of the background IR which was removed in making the SFD map is ~0.04 mag

this is tiny, but systematic

• $S_{gal} \uparrow \Rightarrow A_{dust} \uparrow \Rightarrow S_{gal,corrected} \uparrow \uparrow$ becomes even larger after correction for A_{dust}

- systematically overestimates the contrast of real cosmic structure
- maybe important for precision measurements of cosmological parameters

Future work

- Quantitative comparison between our interpretation and the expect FIR fluxes of the SDSS galaxies (assign FIR fluxes to each galaxy statistically + photo-z)
- Evaluate possible effects on LSS statistics using the simulation data
- Unfortunately the precise correction for the effect is difficult without both deeper spectroscopic galaxy data and the reliable SED

Conclusion: 过 😤 🚈

A typhoon is coming, but don't worry and just laugh; everything in the world is dust after all. 風前一

A