2010年代の日本の天体宇宙物理大型計画

重力波(地上)

光赤外 (地上)

電波 (地上)

赤外線(衛星)

X線 (衛星)

天体宇宙物理分野(5計画)

大型低温重力波望遠鏡(LCGT) 30m光赤外望遠鏡(TMT) 一平方キロメートル電波干渉計(SKA) 次世代赤外線天文衛星(SPICA) 宇宙X線衛星アストロ-H(ASTRO-H)

東京大学大学院理学系研究科物理学専攻 須藤 靖

2011年1月31日13:30-14:20@日本学術会議講堂 日本学術会議シンポジウム 学術の大型施設計画・大規模研究計画 (マスタープラン)に関する物理系シンポジウム

天文学・宇宙物理学研究の現状と展望

天文学・宇宙物理学研究対象と方法論:とにかく「いろいろ」

- ■対象別:「XX」の起源と進化
 - ■「XX」 = 惑星、太陽、恒星、星間物質、超新星、コンパクト天体、銀河系(天の川)、銀河、活動銀河核、銀河団、宇宙、時空、生命・文明
- ■波長別:「YY」天文学
 - 「YY」 = 電波、赤外線、可視光、紫外線、X線、 ガンマ線、宇宙線、ニュートリノ、重力波
- 手法別:
 - ■理論、観測(地上、気球、ロケット、衛星、地下)、 実験、数値シミュレーション

最近20年間の観測的進展

- ダークマターの存在の確立
- 超新星1987Aからのニュートリノの検出
 - ■ニュートリノ天文学
- 太陽系外惑星の発見
- ガンマ線バーストの宇宙論的天体説の確定
- 超新星を用いた宇宙の加速膨張の発見
 - ダークエネルギーの存在/一般相対論の限界?
- 広域銀河3次元地図作成と遠方銀河の地平線拡大
 - スローンサーベイ、ハッブル望遠鏡、すばる望遠鏡
- 宇宙マイクロ波背景輻射による精密宇宙論
 - 標準ダークマターモデル(インフレーションによるゆらぎ、冷たいダークマター、ダークエネルギー)

残され た 課 題と 謎

- ■宇宙の起源
 - ■素粒子物理学・量子重力理論の進展に依存
- ダークマターの直接検出
 - 天文学から高エネルギー物理学実験へ
- ■ダークエネルギーの性質の解明
 - ■宇宙の加速膨張の起源
- 重力波の直接検出
 - 一般相対論の検証から新しい天文学の窓へ
- 高エネルギー宇宙線の起源
 - ■粒子加速機構の解明、粒子線天文学の開拓
- 超新星爆発・ガンマ線バーストのメカニズム
 - ▶大質量星進化の最終段階の理解
- 第一世代天体の発見・起源・進化
 - 宇宙の果てを見通す、天体の起源、元素の起源
- 恒星・惑星の起源
 - 星・惑星・コンパクト天体の形成と進化
- 地球型系外惑星の発見から宇宙生物学へ
 - 第二の地球、生命・文明の起源、生物の普遍性

大型科学計画における2つの相補的文化: 天文学と高エネルギー物理学の例

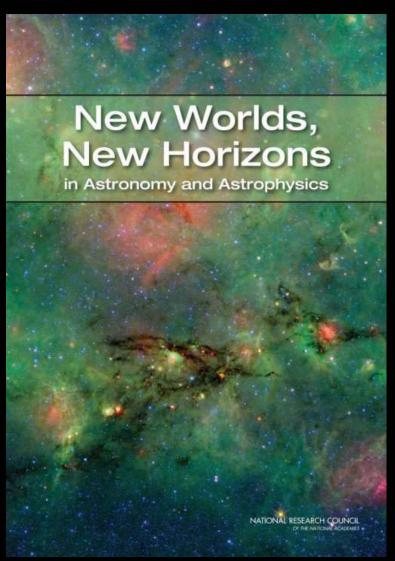
	高エネルギー物理学	天文学			
研究ゴール	明確、一点集中	とりあえず何でもあり			
	定量的な予言の検証	検証よりむしろ予想外の発見			
データ	共同研究グループ内 で占有、単一目的	1, 2年後には公開(誰でも自 由に応用・解析可)、多目的			
規模	国際協力は当たり前	十人から百人程度が普通			
	数千人規模のものも	今後は巨大化が不可避			
個々の成果のインパクト	大	小(?)			
全成果総和のインパクト	大 (というか上の値とほぼ同じ)	大 (とりわけ専門家以外の一般納税者に対しては特大)			

(天文学)研究スタイルの必然的進化:

太陽系外惑星探査を例として

今はどの時期なのかを見極めることが本質

	地上からの系外 惑星探査	スペースからの 系外惑星探査	系外惑星上の生命 探査	
紀元前	山師、先駆者	荒唐無稽	論外:	-
~1995年	ハイリスク	ハイリスク	危ない人々、十分	
	・ノーリターン	・ノーリターン	成功して失うもの がない人	<u></u>
1995年	ゴールドラッシュ	立案	荒唐無稽	系
~2009年	ハイリスク	ハイリスク	ハイリスク	
	・ハイリターン	・ハイリターン	・ノーリターン	系
2009年	定着	実現	立案	1
~ 20xx年	ローリスク	ローリスク	ハイリスク	
	・ハイリターン	・ハイリターン	・ハイリターン	
20xx年~	統計を稼ぐ	定着	実現?	/ \
	ローリスク	ローリスク	ローリスク	
	・ローリターン	・ローリターン	・ハイリターン?	


ブレイク スルー

1995年 系外惑星発見

2009年 系外惑星専用 衛星Kepler 打ち上げ

20XX年 ハビタブル惑星 発見???

Astro2010: decadal survey

- Cosmic Dawn
- New Worlds
- Physicsof the Universe

August 13, 2010

http://sites.nationalacademies.org/bpa/BPA_049810

The Science Frontier: discovery areas and principal questions (1)

Discovery areas

- Identification and characterization of nearby habitable exoplanets 第二の地球
- Gravitational wave astronomy 重力波天文学
- Astrometry 銀河系・宇宙の精密測量
- The epoch of reionization 宇宙の再電離

The Science Frontier: discovery areas and principal questions (2)

• Questions:

- How did the universe begin?
- What were the first objects to light up the universe and when did they do it?
- How do cosmic structures form and evolve?
- What are the connections between dark and luminous matter?
- What is the fossil record of galaxy assembly and evolution from the first stars to the present?
- How do stars and black holes form?
- How do circumstellar disks evolve and form planetary systems?
- How do baryons cycle in and out of galaxies and what do they do while they are there?
- What are the flows of matter and energy in the circumgalactic medium?

The Science Frontier:

discovery areas and principal questions (3)

Questions:

- What controls the mass-energy-chemical cycles within galaxies?
- How do black holes work and influence their surroundings?
- How do rotation and magnetic fields affect stars?
- How do massive stars end their lives?
- What are the progenitors of Type Ia supernovae and how do they explode?
- How diverse are planetary systems and can we identify the telltale signs of life on an exoplanet?
- Why is the universe accelerating?
- What is dark matter?
- What are the properties of the neutrinos?
- What controls the masses, spins and radii of compact stellar remnants?

Large-scale Programs (prioritized)

Ground-based

Subaru HST

- 1. Large Synoptic Survey Telescope (LSST)
- 2. Mid-Scale Innovations Program Subaru PFS
- 3. Giant Segmented Mirror Telescope (GSMT) TMT
- 4. Atmospheric Cerenkov Telescope Array (ACTA)

Space

WISH

- 1. Wide Field InfraRed Survey Telescope (WFIRST)
- 2. Explorer Program Augmentation ASTRO-H
- 3. Laser Interferometer Space Antenna (LISA)
- 4. International X-ray Observatory (IXO) DECIGO

天体宇宙物理学関連の大型5計画:

大型低温重力波望遠鏡(LCGT) 地上 30m光赤外望遠鏡(TMT) 地上 1平方キロメートル電波干渉計(SKA) 地上 次世代赤外線天文衛星(SPICA) 衛星 宇宙X線衛星アストロ-H(ASTRO-H) 衛星

以下のプレゼンテーション作成のために、これら5計画の関係者の方々から多くの資料を提供して頂いた。お名前を記すことはしないが、ここに厚く感謝の意を表させて頂きたい。

天体宇宙物理学関連地上大型計画

- LCGT (Large-scale Cryogenic Gravitational wave Telescope)
 - 大型低温重力波レーザー干渉計望遠鏡@神岡
 - ■日本主導
- TMT (Thirty Meter Telescope)
 - 30メートル光・赤外望遠鏡@ハワイ島マウナケア山
 - 国際協力(米加中印台湾+日本)
- SKA (Square Kilometer Array)
 - 1平方キロメートル電波干渉計@豪?南アフリカ?
 - 国際協力(欧米加豪中印南アフリカ+日本)

LCGT: 大型低温重力波望遠鏡

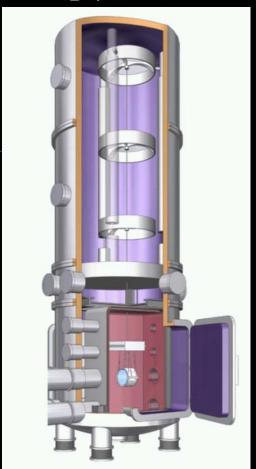
■日本学術会議の提言が契機となり、文部科学省の「最先端研究基盤事業」の補助対象事業の1つに選定され、プロジェクトが開始された。既に研究推進体制を整備して、神岡地下に建設中

■ 重力波天文学の創生

- 基礎物理学: 世界初の重力波直接検出
- 天文学:宇宙観測の全く新しい窓
- 一般相対論検証
- 初期宇宙、ブラックホール、中性子星の解明

■ 日本独自の計画とその優位性

- 東大宇宙線研がホスト、国立天文台、KEKと協力
- 予算155億円
- ■地面振動が圧倒的に小さい神岡地下に建設


LCGT: 装置の概要

片側3kmの超高感度レーザー干渉計

LCGTの設置予定地 本計画の検出器 斯津鉱山 高森高

- 地面振動の小さい神岡で200m以深の地下に設置
 - 本格的なレーザー干渉計として世界初
- 熱雑音を抑制して極限感度を達成するため、極低温鏡の採用
 - 世界で唯一
- 7億光年先の連星中性子星合体を観測できる感度
 - 年に数回以上の事象観測が期待

LCGT用低温鏡 と懸架システム

LCGT: 年次計画と国際競争力

- 2013-14年: 常温で調整・初期観測 → 引き続き高度化(低温化)
 - 重力波世界初観測を狙う最高感度の装置へ
- 2017年度当初から低温で定常観測状態になるよう最大限の努力
 - 高度化(低温化)に向けた予算獲得には今後の努力が必要
- 欧米でも2010年代半ば以降の重力波初観測に向けたプロジェクトが進行
 - 国際競争力を保つには、まさに今とりかかるしかない

	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
				建設	調整	∙初期観	.測	調整		観測	
LCGT					レ	ーザー干	歩計高度化	Ł			
(次期) LIGO	調整	- 観測		改造(承認済∂	+)	訂	整		観測	
(米)											
(次期) Virgo	調整	፟ቔ測		改造	(承認済	み)	訂	整		観測	
(欧)											

LCGT: 国際重力波天文学ネットワークへ

ブラックホール 誕生

- 米欧の2局に加えて日本にLCGTが存在する意義
 - 重力波源の方向決定
 - 24時間の全天重力波モニターネットワーク観測が実現
- 他波長・他粒子観測と組み合わせて重 力波天文学を創生
 - ニュートリノ、ガンマ線との同時観測
 - 光学望遠鏡によるフォローアップ観測

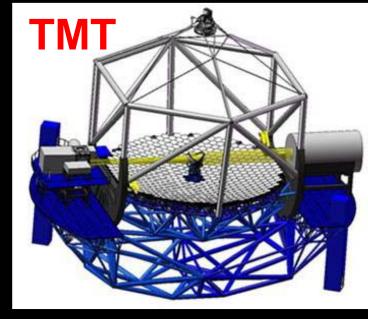
次期VIRGO

- 国際共同研究の推進
 - LIGO, Virgoとの実質的な共同研究開始
 - アジアの観測センターを目指す
 - 中国、台湾、インド、アメリカとの共同研究
 - 韓国とも協議中
 - 更なる国際共同研究の拡大の検討

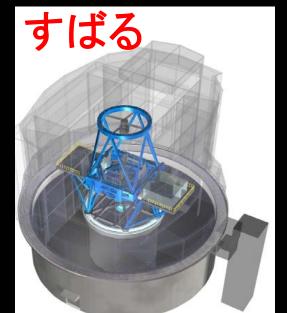
次期LIGO

天体宇宙物理学関連<mark>地上</mark>大型計画

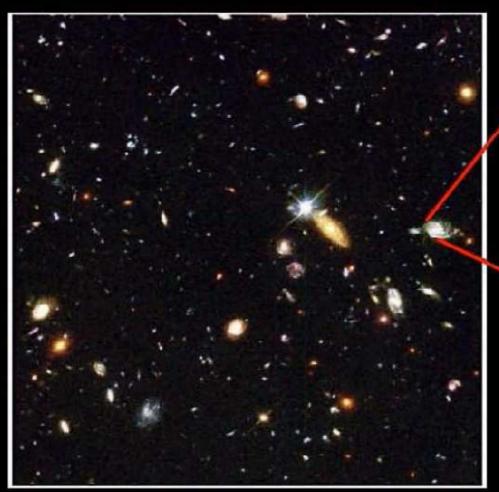
- LCGT (Large-scale Cryogenic Gravitational wave Telescope)
 - 大型低温重力波レーザー干渉計@神岡
 - ■日本主導
- TMT (Thirty Meter Telescope)
 - 30メートル光・赤外望遠鏡@ハワイ島マウナケア山
 - 国際協力(米加中印台湾+日本)
- SKA (Square Kilometer Array)
 - 1平方キロメートル電波干渉計@豪?南アフリカ?
 - 国際協力(欧米加豪中印南アフリカ+日本)


TMT: 概略

- 口径30mの次世代光赤外大型望遠鏡
 - 1.5m六角鏡492枚
 - ハワイ島マウナケア山
- 広範な次世代天文学研究テーマを網羅
 - 第一世代天体、銀河の誕生と進化、太陽系外惑星の精密分光と生命の兆侯の探査、宇宙膨張変化率の直接検出、物理定数の時間変化
 - ■国際協力体制
 - 建設費約1300億円 (日本が 1/4分担??)
 - 2019年末完成
 - カリフォルニア大学、カルテク、 米国天文学大学連合、カナダ 天文学大学連合、中国、インド、 台湾?


TMT: すばるとの比較・相補性

	TMT	すばる	
鏡直径	30m	8m	
重量	1400トン	555トン	
解像度	0.015秒角	0.06秒角	
	@近赤外線	@近赤外線	
視野	7分	1.5度	
(口径)	(MOBIE)	(HSC)	



■ すばるで発見・TMTで精査

- すばるの広視野とTMTの高解像度・ 高感度は次世代天文学の最強ペア
- 日本の優位性(サイト、過去の成果、 すばるとのシナジー)を最大限発揮

TMTの威力: 大集光力と高解像度

解像度 すばるの3.7倍に 集光力 すばるの13倍に

The same with a 30 meter telescope & Adaptive Optics

TMT: 期待される科学的成果

- ■宇宙最遠方銀河と第一世代天体
 - 日本がすばるで主導しているテーマ
- ■宇宙の膨張率の直接測定
 - ■ダークエネルギーの直接的検証
- 物理基本定数は時間変化するか?
 - ■物理学の大前提を直接検証
- 太陽系外惑星の直接撮像・分光とバイオマー カー探査
 - 天文学から宇宙生物学へ
- むろんこれら以外にも高解像度・高感度で従来のあらゆる天文学観測を飛躍的に進歩させる

天体宇宙物理学関連<mark>地上</mark>大型計画

- LCGT (Large-scale Cryogenic Gravitational wave Telescope)
 - 大型低温重力波レーザー干渉計望遠鏡@神岡
 - ■日本主導
- TMT (Thirty Meter Telescope)
 - 30メートル光・赤外望遠鏡@ハワイ島マウナケア山
 - 国際協力(米加中印台湾+日本)
- SKA (Square Kilometer Array)
 - 1平方キロメートル電波干渉計@豪?南アフリカ?
 - 国際協力(欧米加豪中印南アフリカ+日本)

SKA: 1平方キロメートル電波干渉計

- 集光面積1km²の巨大電波干渉計
 - 豪 あるいは 南アフリカに建設
 - 波長1.2 cm ~3mの長波長電波
 - アンテナ2000台を3000km範囲内に
 - 高角度分解能: 0.01 0.001 秒角
 - アルマ(波長0.3mm 10 mm、0.01 秒角)と相補的

■米欧豪中心の国際協力

- 2014年頃に建設開始?
- 2018年頃から初期運用?
- 2024年頃から本格運用?
- 1000億円を超える総経費

Big Bang

SKA: 科学的目標

10 ⁻⁴⁴ s	10 ⁻³⁵ s	10 ⁻³² s	10 ⁻¹⁰ s	300 s	3×10 ⁵ yr	1×10 ⁹ yr	15×10 ⁹ yr
Superstring(?)	GUT	Inflation	Electro-weak	Particle	Recombination	Galaxy and Star	Present
Era	Era	Era	Era	Era	Era	Formation	Era

重力理論の検証 重力波検出

> 宇宙暗黒時代· 銀河進化の解明

> > z = 7.6

パルサーの超高精度観測 による背景重力波の検出 宇宙初代天体探査
・巨大ブラックホール探査
・ダークエネルギー解明

地球型惑星 · 有機高分子探査

SKAパスファインダー

- SKAをスケールダウンした装置 (集光力1%)
 - 新技術の実証と(試験的な)サイエンス実施
- 進行中の3つのパスファインダー
 - ASKAP (Australia SKA Pathfinder)
 - 12mパラボラアンテナ36台@豪州
 - 0.7 GHz-1.8 GHzのアレイ(200素子) 受信機を搭載しHI広視野観測
 - LOFAR (LOw Frequency Array for Radio Astronomy)
 - 無指向性アンテナ5万台@欧州
 - < 250 MHzで赤方偏移HIイメージ取得

SKA: 日本の最近の進捗

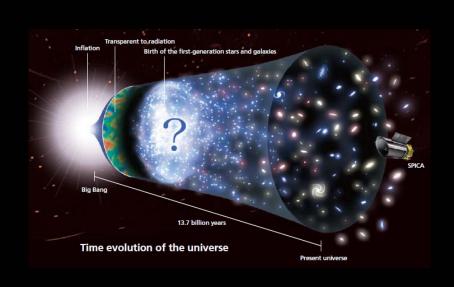
- 1. SKA科学技術委員会への正式参加予定
 - 日本代表を送り協議に参加
 - 各国との協議により参加形態の模索
 - サイエンスWG, 技術WGへの委員派遣
- 2. SKAによるサイエンス等の独自の検討
 - 関連研究者からなるSKA Consortiumを組織、様々な検討を開始
 - 惑星科学、化学、物理分野の研究者も含め、広範囲な議論
 - 提案されているサイエンスケースの例 巨大有機分子のcm波帯での探査;軽い有機分子はアルマで 宇宙磁場の起源; Faraday 回転を利用した宇宙磁場の測定 中性水素宇宙の解明;宇宙再電離時期から、近傍・銀河系まで
- 3. SKA パスファインダー計画との連携の模索
 - ASKAP グループとサイエンス面で連携
 - LOFAR グループとサイエンス面(理論研究面等)で連携など

天体宇宙物理学関連衛星計画

- SPICA (Space Infrared telescope for Cosmology and Astrophysics)
 - 口径3.2mの全冷却赤外線望遠鏡
 - 日本の宇宙航空研究開発機構が主導する、欧州 宇宙機構等との国際協力ミッション
 - 2018年度打ち上げをめざす
- ASTRO-H
 - 日本で6番目のX線天文観測衛星
 - 日本の宇宙航空研究開発機構が主導する国際 協力ミッション
 - 2013年度打ち上げをめざす

SPICA: 次世代赤外線天文衛星

- 銀河誕生と惑星系起源の解明
- ■概要
 - 圧倒的な高感度・高分解能
 - 6Kの全冷却赤外線望遠鏡
 - 口径3.2m 望遠鏡
 - 2018年度打上げを目指す
- 日本が発案・主導する国際ミッション
 - 欧州: ESA Cosmic Vision の枠組み、14カ国からなるコンソーシアム結成
 - 韓国:KASIを中心にチーム結成
 - 米国:参加を検討中

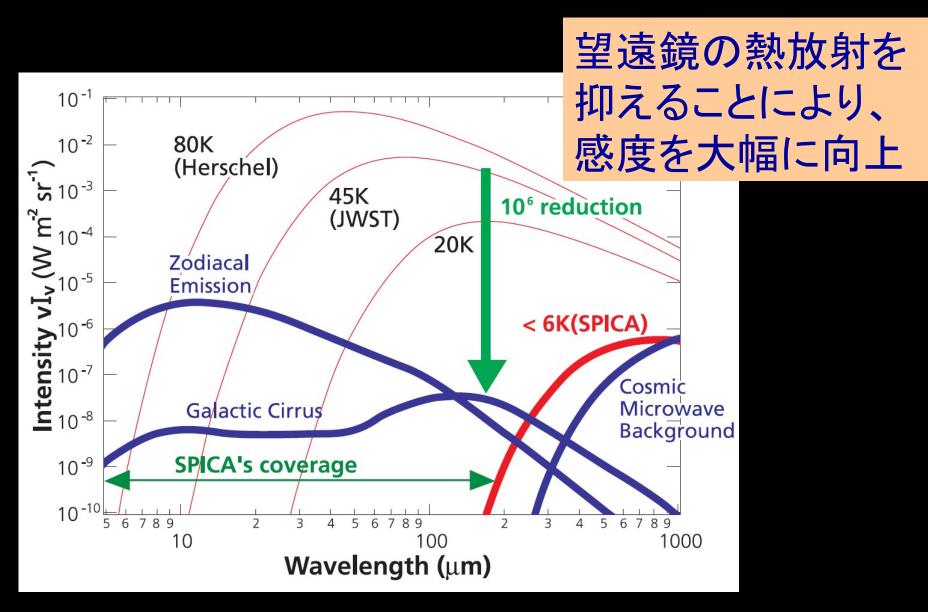


150万km 彼方の 宇宙天文台

SPICAが解明するもの: 我々はなぜ、かく在るのか?

■宇宙の物質輪廻の解明

我々人間を構成する各種の 元素は、宇宙137億年の歴 史のどこで、どのように生ま れたのか?



■ 惑星系のレシピ

- 我々を育んだ惑星はどう やって生まれたのか
- 生命の誕生?われわれは 宇宙で独りぼっちなのか?

SPICA = Cool Mission!

SPICA: 国際的な評価と支援

- 日本
 - 学術会議においてマスタープランの一つとして採択
- ■区欠州
 - ESA Cosmic Vision にて将来ミッション候補として選定
- ■米国
 - ASTRO 2010にて、米国のSPICAへの参加が推薦される
- ■韓国
 - ■長期大型科学計画の中で高い位置づけ
- 世界の赤外コミュニティはSPICAに統合
 - ■世界をリードする千載一遇のチャンス

天体宇宙物理学関連衛星計画

- SPICA (Space Infrared telescope for Cosmology and Astrophysics)
 - 口径3.2mの全冷却赤外線望遠鏡
 - 日本の宇宙航空研究開発機構が主導する、欧州 宇宙機構等との国際協力ミッション
 - 2018年度打ち上げをめざす

ASTRO-H

- 日本で6番目のX線天文観測衛星
- 日本の宇宙航空研究開発機構が主導する国際 協力ミッション
- 2013年度打ち上げをめざす

宇宙X線衛星ASTRO-H

- 1. 軟X線分光検出器(SXS):
 - $0.3-12 \text{ keV}, \quad \Delta E=5 \text{eV}, \text{ FOV}=3$
 - ⇒ 2000色、ガス速度、電子温度とイオン温度の区別
- 2. 軟X線撮像検出器(SXI):
 - 0.4-12 keV, △E=150eV, FOV=38' ⇒ 銀河団の外縁部
- 3. 硬X線撮像検出器 (HXI):
 - 5-80 keV ΔE<2keV, FOV=9' ⇒ 非熱的超高温ガス
- 4. 軟ガンマ線検出器(SGD): 100-600 keV 撮像性能無し

ASTRO-H:目的

■ 宇宙の大構造とその進化の解明

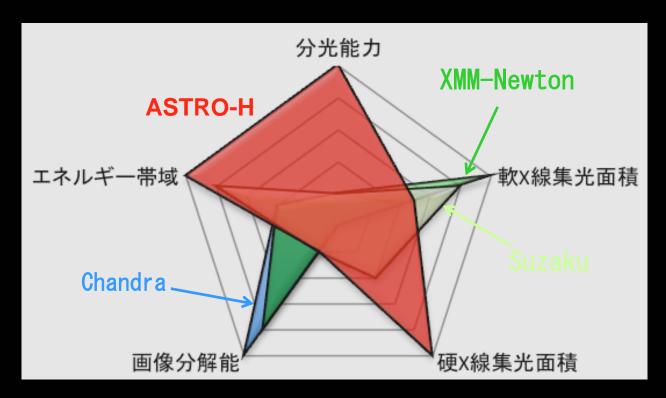
銀河団という宇宙最大の天体におけるエネルギー収支(熱的・非熱的・ 運動)を解明することで、銀河団の動的進化史を直接構築

宇宙の極限状態の理解

■ 厚い周辺物質に隠された遠方(過去)の巨大ブラックホールを「すざく」の 約100倍の感度で観測し、その進化と銀河形成に果たす役割を解明

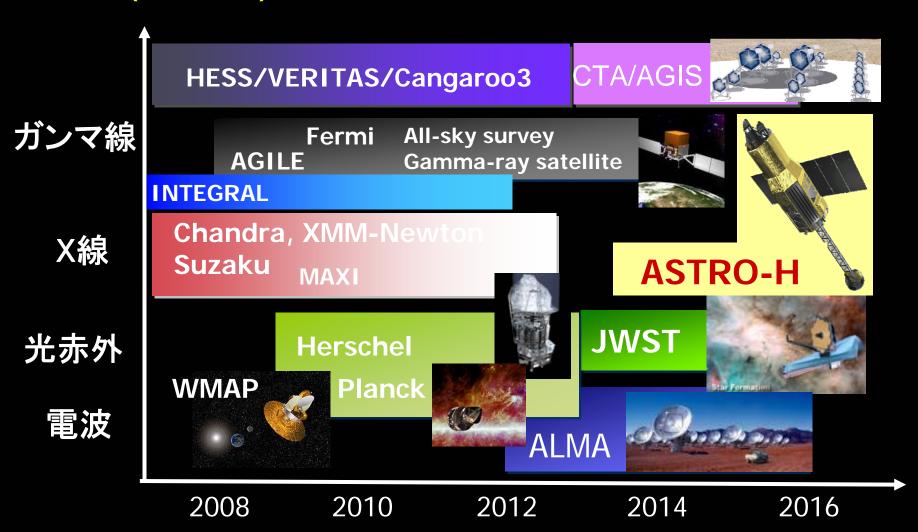
■ 多様性にとんだ非熱的エネルギー宇宙の探求

- ブラックホール極近傍の物質の運動を測定し、相対論的時空の構造を 解明
- 重力・衝突・爆発による宇宙線加速現場の直接観測にもとづく宇宙線の 起源の探求


■ ダークマター・暗黒エネルギーの探求

銀河団内のダークマターの分布と総質量の測定を通じて、ダークマターと暗黒エネルギーの性質を解明

ASTRO-H:特徴


- はくちょう、てんま、ぎんが、あすか、すざくに続く日本の第6番目のX線天文衛星
- 世界初の硬X線撮像分光観測
- 世界初のマイクロカロリメータによる超高分解能X線分光観測
- (0.3-600)keVの3桁以上にもわたる史上最高の高感度広帯

域X線観測

ASTRO-H:国際的意義

2010年代半ばに「軌道上X線天文台」として機能する唯一の衛星 ALMA(サブミリ波)、JWST(光赤外)、Fermi(ガンマ線)などと高い相補性

2010年代の日本の天体宇宙物理大型計画

重力波(地上)

光赤外 (地上)

電波 (地上)

赤外線(衛星)

X線 (衛星)

2008

2010

2012

2014

2016

2018

2020