Submillimeter detection of the Sunyaev - Zel'dovich effect toward the most luminous X-ray cluster and its cosmological implications

Yasushi Suto

Dept. of Phys. and RESCEU (RESearch Center for the Early Universe) The University of Tokyo, Japan

1998 December 11 (Cosmological constraints from X-ray clusters at Strasbourg)

Contents

1	Breaking the cosmological degeneracy	2
2	SZ observation of RXJ1347	6
3	Cosmological implications	15
4	Conclusions	17

1 Breaking the cosmological degeneracy

Many cosmological models are known to be more or less successful in reproducing the structure at redshift $z \sim 0$ by construction.

\Downarrow

This is because the models have still several degrees of freedom or *cosmological parameters* which can be appropriately *adjusted* to the observations at $z \sim 0$ $(\Omega_0, \sigma_8, h, \lambda_0, b(r, z))$.

> How to break the degeneracy among the viable models ?

\downarrow

Wider: increase the statistics from wide-field surveys (SDSS, PLANCK, ...)

Deeper: observe higher redshifts

Different bands: cm, mm and submm bands in addition to the optical and X-ray bands.

(Viana & Liddle 1996; Eke, Cole, & Frenk 1996; Barbosa, Bartlett, Blanchard, & Oukbir 1996; Fan, Bahcall, & Cen 1997; Kitayama, Sasaki & Suto 1998; Bahcall, & Fan 1998) \star The Sunyaev-Zel'dovich effect

Inverse Compton scattering of the CMB photon by the high temperature electron gas in clusters

 \star thermal SZ flux

$$\Delta I_{\nu}^{\text{th}} = i_0 y \frac{x^4 e^x}{(e^x - 1)^2} \left(x \coth \frac{x}{2} - 4 \right) = i_0 y \ g(x)$$
$$i_0 \equiv 2 \frac{k^3 T_{\text{CMB}}^3}{h^2 c^2} = 2.6 \times 10^{-15} \text{erg/s/cm}^2/\text{Hz/str}$$

 $= 2.2 \times 10^4 \mathrm{mJy}/\mathrm{arcmin}^2$

Figure 1: Spectral feature of the Sunyaev-Zel'dovich flux. Independent of sources nor z !

Negative source for $\lambda > 1.38$ mm ($\nu < 218$ GHz) Positive source in submm band

* Breaking the degeneracy in soft X-ray number counts using the SZ number counts (CDM models)

Figure 2: (a) soft X-ray (0.5-2.0 keV), (b) hard X-ray (2-10 keV), and (c) submm (0.85 mm) bands. (Kitayama, Sasaki & Suto, PASJ, 1998, 50, 1).

\star Why submm number counts

New: no unambiguous detection yet

- Feasible: new facilities (SCUBA, BIMA, PLANCK, LMSA)
- Complementary: orthogonal information to radio/optical/Xray data \rightarrow distance indicator, H_0 , Ω_0 , λ_0 , peculiar velocity field

 $\star \sigma_8$ vs. Ω_0 in CDM models (n = 1, h = 0.7)

Figure 3: Shaded regions represent the 1σ significance contours derived in KS97 from the soft X-ray (0.5-2 keV) Log N - Log S. Dotted and solid lines indicate the predicted contours of the number of clusters in the hard X-ray (2-10 keV) band at $S = 10^{-13}$ erg cm⁻² s⁻¹ in the submm (0.85 mm) band at $S_{\nu} = 10^2$ mJy. (Kitayama, Sasaki & Suto, PASJ, 1998, 50, 1).

2 SZ observation of RXJ1347

1998 March 4-14, May 19-21 at Nobeyama, Japan 1998 May 30-31 at JCMT/SCUBA, Hawaii

R. Kawabe (PI), N. Kuno, H. Matsuo :

Nobeyama Radio Observatory, Japan.

M. Hattori, E. Komatsu :

Department of Astronomy, Tohoku University K. Yoshikawa :

Department of Astronomy, Kyoto University

S. Schindler :

Liverpool John Moores University, U.K.

T. Kitayama, Y. Suto :

Department of Physics, University of Tokyo

$\operatorname{cluster}$		z	θ_c [arc	sec]	$\Delta I_{\nu}(0)$ at 350GHz			
RXJ1347-1145		0.45	8.4 ± 1.8		$7.1 \pm 1.7 [h_{50}^{-1/2} \text{mJy/beam}]$			
CL0016+16		0.555 51			$1.9^{+0.3}_{-0.1}$			
A2163		0.201	$0.201 72 \pm$		4.5 ± 0.3			
A2218		0.171	$60 \pm$	12	1.2 ± 0.3			
Coma		0.0235	$630 \pm$	36	1.1 ± 0.1			
detector frequency FWHM integ. time noise [mJy/beam]								
Nobeyama 21		lGHz	76''	$25 \mathrm{min}$		1.9		
Nobeyama 43		m BGHz	40''	$30 \mathrm{min}$		4.0		
Nobeyama 150)GHz	12''	$50 \mathrm{min}$		3.0		
SCUBA 350)GHz	14''	$150 \mathrm{min}$		8.0		

\star R-band and X-ray image of RXJ 1347-1145

Figure 4: X-ray flux contour (ROSAT/HRI) is overlaid on the R-band image (ESO NTT). (Schindler et al. A&A 1997, 317, 645.)

 \star Radial profile of RXJ1347-1145 at 21GHz and 43 GHz

Figure 5: Radial intensity profile towards RXJ1347 at 21 (left panels) and 43 (right panels) GHz observed at NRO. (Komatsu et al. 1999, ApJ, 561, L1)

Figure 6: Energy spectrum of the central point source at the position of RXJ 1347-1145.(Komatsu et al. 1999, ApJ, 561, L1)

\star Submm and X-ray image of RXJ 1347-1145

Figure 7: 350 GHz SCUBA map of RXJ1347-1145, which is overlaid by X-ray contours of the ROSAT-HRI data. SCUBA and HRI image is smoothed with a Gaussian filter of $\sigma_{\rm FWHM} = 6$ and 5", respectively. (Komatsu et al. 1999, ApJ, 561, L1)

 \star Radial profile of RXJ1347-1145 at 350 GHz

Figure 8: Radial intensity profile towards RXJ1347 at 350GHz observed at JCMT/SCUBA. (Komatsu et al. 1999, ApJ, 561, L1)

 \star Corrected radial profile at 350 GHz

Figure 9: Radial intensity profile towards RXJ1347 at 350GHz observed at JCMT/SCUBA.(Komatsu et al. 1999, ApJ, 561, L1)

 \star Confidence level contour $(T_e - \theta_c)$

Figure 10: Confidence contours on the gas temperature T_e and the core radius θ_c from data analysis at 21, 43, and 350 GHz. (Komatsu et al. 1999, ApJ, 561, L1)

 \star Confidence level contour $(y_0 - \theta_c)$

Figure 11: Confidence contours on the central y-parameter y_0 and the core radius θ_c from combined data analysis at 21 and 350 GHz. (Komatsu et al. 1999, ApJ, 561, L1)

3 Cosmological implications

 \star H₀ from the SZ effect toward RXJ1347 [Preliminary]

Figure 12: The Hubble constant estimated from RXJ1347 observation at 21 and 350 GHz as a function of Ω_0 . Thick and thin curves indicate the best fit value and its 1σ uncertainty, respectively. (Komatsu et al. 1999, ApJ, 561, L1)

Figure 13: The peculiar velocity of RXJ1347 estimated from the combined analysis of the kinematic and thermal SZ effect at 21 and 350 GHz. (Komatsu et al. 1999, ApJ, 561, L1)

4 Conclusions

 \star Previous claims of the SZ temperature increment were based on the measurement of the total flux alone.

 \rightarrow might be seriously contaminated by the dust in our Galaxy and by submm sources in the field, and thus difficult to identify the SZ signal from the total flux.

* We have successfully detected the intensity profile of the cluster RXJ 1347-1145 at 350 GHz (0.85 mm) band with SCUBA/JCMT, which provided an unambiguous case for the detection of the submm SZ temperature increment for the first time.

 \star Preliminary combined analysis of X-ray, 21 GHz and 350 GHz of RXJ1347 yielded

 $d_{\rm A}(z=0.451) = 1730 \pm 300 \pm 370 {\rm Mpc}$

assuming $I_{\rm p}=3.2$ mJy and the spherical symmetry. This is translated to

 $h = 0.41 \pm 0.07 \pm 0.09$ for $(\Omega_0, \lambda_0) = (1.0, 0.0)$ $h = 0.48 \pm 0.08 \pm 0.10$ for $(\Omega_0, \lambda_0) = (0.3, 0.7)$