Signatures of an inner binary black hole with a tertiary orbiting star

Yasushi Suto Department of Physics and Research Center for the Early Universe The University of Tokyo

Astronomy session@ Copernicus World Congress, February 20 2023

Search for progenitors of LIGO binary BHs star-BH binaries = star-BBH triples?

Gaia mission (2013-)

Astrometry of stars in Galaxy $\sim 10^9$ stars eventually RV with 200-350m/s precision for brightest stars (Katz 2018)

Yamaguchi+ (2018)

5-year mission may detect 200-1000 star-BH binaries

TESS mission (2018-)

photometry of nearby stars (~ 12mag) transit planets

Masuda & Hotokezaka (2019)

Light curve modulation (relativistic effects, tidal deformation) $\Rightarrow (10 - 100)$ star-BH binaries may be identified

Some of them may be indeed a star-binary BH triple! Can precise radial velocity follow-up unveil the inner BBH?

RV modulations of a tertiary star

Pout

Kepler motion + Short-term RV variations (inner-binary perturbation)

(ii) Non-coplanar triple

high-precision RV follow-up

Keplerian motion RV

+ **RV** variations by inner binary *K*_{Kep}

Inclination $I_{out}(t)$ modulated by precession and ZKL effect

Examples of simulated triple systems

 $P_{out} = 78.9 \text{ days}$ $P_{in} = 10 \text{ days}$ equal-mass binary 10M $_{\odot}$ + 10M $_{\odot}$ unequal-mass binary 2M $_{\odot}$ + 18M $_{\odot}$

Hayashi & YS 2020, ApJ, 897, 29

Model	Iout (deg)	Iin (deg)	i _{mut} (deg)	$m_1~(M_\odot)$	$m_2~(M_\odot)$	$e_{ m in}$
P1010	90	90	0	10	10	10^{-5}
PE1010	90	90	0	10	10	0.2
R1010	90	270	180	10	10	10^{-5}
O1010	0	90	90	10	10	10^{-5}
I1010	0	45	45	10	10	10^{-5}
P0218	90	90	0	18	2	10^{-5}
PE0218	90	90	0	18	2	0.2
R0218	90	270	180	18	2	10^{-5}
O0218	0	90	90	18	2	10^{-5}
10218	0	45	45	18	2	10^{-5}

Note. P, PE, R, O, and I indicate prograde, prograde eccentric, retrograde, orthogonal, and inclined orbits.

Coplanar prograde circular triples: radial velocity modulation at $\sim 2v_{in}$

equal-mass inner binary

$$\nu_{-3} \equiv 2\nu_{\rm in} - 3\nu_{\rm out}, \quad \nu_{\rm ou$$

ν_{in}: inner orbital frequency

Evolution of radial velocity for non-coplanar triples

Z

Inclined equalmass binary

Precession timescale

$$\frac{P_{\Omega}}{P_{\text{out}}} \approx \frac{80.7}{\cos i_{\text{mut}}} \left(\frac{m_1 + m_2 + m_*}{23 \, M_{\odot}} \right) \left(\frac{m_*}{3 \, M_{\odot}} \right)^{-1} \\ \times \left(\frac{P_{\text{out}}}{78.9 \text{ days}} \right) \left(\frac{P_{\text{in}}}{10.0 \text{ days}} \right)^{-1}$$

Kozai-Lidov timescale

$$\frac{T_{\text{KL}}}{P_{\text{out}}} = \frac{m_1}{m_*} \left(\frac{P_{\text{out}}}{P_{\text{in}}}\right) (1 - e_{\text{out}}^2)^{3/2}$$
$$\approx 26 \left(\frac{m_1}{10 M_{\odot}}\right) \left(\frac{m_*}{3 M_{\odot}}\right)^{-1}$$
$$\times \left(\frac{P_{\text{out}}}{78.9 \text{ days}}\right) \left(\frac{P_{\text{in}}}{10 \text{ days}}\right)^{-1}$$

Dynamical signature of inner binary black holes in triple systems Radial velocity (RD) monitoring of future star-black

hole binary candidates may reveal inner binary black holes (instead of single black holes) in those systems

short-term RD variations
Hayashi, Wang + YS: ApJ 890(2020)112

periodic modulations of O(1) percent of the Kepler orbital velocity amplitude with a half inner orbital period Hayashi + YS:

ApJ 897(2020)29

Iong-term RD variations in inclined triples

 the semi-amplitude of the Kepler orbital velocity modulated periodically by the precession of the inner and outer orbits over (10-100)(P_{out}/P_{in})P_{out}