Radial velocity modulation of a tertiary star orbiting an inner binary black hole

Yasushi Suto (須藤靖)

Department of Physics & Research Center for the Early Universe, The University of Tokyo 14:20 March 15, 2023 @Academia Sinica Institute of Astronomy and Astrophysics

My past talks at Taiwan

- Talk at the 8th Taipei Astrophysics Workshop AMiBA2001: high-z clusters, missing baryons and CMB polarization@National Taiwan University and Grand Formosa (June11-15, 2001) "Clustering of Dark Matter Halos on the Light-cone"
- Matter and Energy in Clusters of Galaxies@National Central University, Chung-Li, Taiwan (April 23-27, 2002) "Density profiles and clustering of dark halos and clusters of galaxies"
- DENET-Taiwan HSC collaboration meeting@ASIAA, Taipei (March 7-8, 2011) "DENET and Sumire collaboration"
- Seminar@ASIAA (February 2, 2012) "Cosmological implications of inhomogeneities in intra-cluster gas"
- Colloquium@ASIAA (February 3, 2012) "Colors of a second Earth"

Today's talk

- 1. Three-body dynamics: old and new problem
- 2. Hierarchical three-body systems
- 3. Secular-perturbation theory in the three-body problem and von Zeipel-Lidov-Kozai effect
- 4. Search for star-blackhole binaries in optical surveys: a star-blackhole binary or a star-binary blackhole triple?
- 5. Dynamical signature of triple systems with an inner binary black-hole

1 Three-body dynamics: old and new problem

Celestial mechanics and the three-body problem = "superstring theory" before the 20th century

Great mathematicians had seriously worked on the topic

- Joseph-Louis Lagrange (1736-1813)
- Pierre-Simon Laplace (1749-1827)
- Johann Carl Friedrich Gauß (1777-1855)
- Carl Gustav Jacob Jacobi (1804-1851)
- William Rowan Hamilton (1805-1865)
- Jules-Henri Poincaré (1854-1912)

If quantum theory and relativity had not been discovered, three-body problem could have been the frontier in mathematical physics at the current epoch that the best scientists would choose to work on

■ what can "we" do then? ⇒ amazing three-body systems + accurate numerical simulations that those great people never expected in their epochs

Ubiquity of triple systems in astronomy

Stellar systems

more than 70% of OBA-type stars and 50% of FGK-type stars a belong to binary/multiple systems (e.g., Alpha Centauri)

(Exo)Planetary systems

planets around binary stars, multi-planets, satellites,,,

Compact objects

- Possible pathway towards binary BHs detected by GW
- Binaries (stars, BHs) around a supermassive BH in galaxies
- Triples of compact objects, e.g., pulsar-WD binary + tertiary WD (Ransom et al. 2014)

Diversities triggered by triple dynamics

Alpha Centauri was a triple system, two suns tightly orbiting one another, and a third, more remote, circling them both. What would it be like to live on a world with three suns in the sky? — Carl Sagan "Contact"

2 Hierarchical three-body systems

Triples are unstable in general ⇔ diversity

Stability criterion

(Mardling & Aarseth 2001)

12/5

$$\frac{r_{\rm p,out}}{a_{\rm in}}\right)_{\rm MA} \equiv 2.8 \left(1 - 0.3 \frac{i_{\rm mut}}{\pi}\right) \left[\left(1 + \frac{m_3}{m_{12}}\right) \frac{(1 + e_{\rm out})}{\sqrt{1 - e_{\rm out}}}\right]$$

- Well-known and widely used, but its implication is often misinterpreted...
- Lyapunov (chaoticity of local trajectory) vs. Lagrange (escape of a body from the system) stability

Hayashi, Trani & YS; ApJ 939(2022)81 ApJ 943(2023)58

Hierarchical three-body systems

 $\iota_{\rm mut}$

 $P_{\rm in}$

 m_3

Pout

Gravitational three-body systems are unstable in general

- stable three-body systems are mostly hierarchical: tight binary
 + distant tertiary orbiting the center-of-mass of the inner binary
- observed three-body systems are likely to be hierarchical
- Stable systems are inevitably associated with (undemocratic) hierarchies

quite universal in biological, astronomical and social systems

 quarks and leptons – atoms – molecules – DNAs – cells – organs – animals – villages – cities – nations – planets – stars – star clusters – galaxies – galaxy clusters – universe(s) – multiverse(s)

 non-intuitive (counter-intuitive) dynamical behavior of hierarchical triples triggers unexpectedly broad diversities in astronomical phenomena (e.g., ZKL effect)

A millisecond pulsar in a stellar triple system

S. M. Ransom¹, I. H. Stairs², A. M. Archibald^{3,4}, J. W. T. Hessels^{3,5}, D. L. Kaplan^{6,7}, M. H. van Kerkwijk⁸, J. Boyles^{9,10}, A. T. Deller³, S. Chatterjee¹¹, A. Schechtman-Rook⁷, A. Berndsen², R. S. Lynch⁴, D. R. Lorimer⁹, C. Karako-Argaman⁴, V. M. Kaspi⁴, V. I. Kondratiev^{3,12}, M. A. McLaughlin⁹, J. van Leeuwen^{3,5}, R. Rosen^{1,9}, M. S. E. Roberts^{13,14} & K. Stovall^{15,16}

Ransom et al. Nature 505 (2014) 520

Ransom et al. Nature 505(2014)520 NS-WD binary + WD

PSR J0337+1715 parameters

inner orbital period (pulsar+WD)	1.629401788(5) day
outer orbital period (WD)	327.257541(7) day
pulsar spin period	2.73258863244(9) msec
mutual orbital inclination	0.0120(17) deg.
highly ci	rcular & coplanar !
highly ci Pulsar mass	rcular & coplanar ! 1.4378(13) M _⊙
highly ci Pulsar mass Inner WD mass	rcular & coplanar ! 1.4378(13) M _☉ 0.19751(15) M _☉

3 Secular-perturbation theory in the three-body problem and von Zeipel-Lidov-Kozai effect

Secular approximation to triple dynamics

- Very different timescales involved: $P_{in} \ll P_{out}$
 - time-consuming for accurate numerical integration
- perturbative expansion in terms of a_{in}/a_{out} (<1)
 - long-time numerical integration by approximating the particleparticle interaction with the ring-ring interaction over appropriate time-averaging of particles on their orbits

Kepler orbital elements

а

Legendre expansion of Hamiltonian

Kepler motion for inner orbit

interaction between inner and outer orbits

$$\mathcal{H} = \frac{k^2 m_1 m_2}{2a_1} + \frac{k^2 m_3 (m_1 + m_2)}{2a_2} + \frac{k^2}{a_2} \sum_{n=2}^{\infty} \left(\frac{a_1}{a_2}\right)^n M_n \left(\frac{\mathbf{r}_{in}}{a_1}\right)^n \left(\frac{a_2}{\mathbf{r}_{out}}\right)^{n+1} P_n(\cos \Phi)$$
Kepler motion for outer orbit
coupling constant
$$M_n = m_1 m_2 m_3 \frac{m_1^{n-1} - (-m_2)^{n-1}}{(m_1 + m_2)^n}$$

$$\mathcal{H} = \mathcal{H}_{Kep,in} + \mathcal{H}_{Kep,out} + \mathcal{H}_{int}$$

$$\mathcal{H}_{int} = \mathcal{H}_{quad} + \mathcal{H}_{oct} + \cdots$$

$$\Rightarrow \text{ approximation by double-averaging of the Hamiltonian over the inner and outer orbits}$$

double-averaged quadrupole and octupole Hamiltonians

$$\langle \mathcal{H}_{\text{quad}} \rangle = \frac{\mu_{12} \Phi_0}{16} [(2+3e_1^2)(3\cos^2 i_{\text{tot}}-1) + 15e_1^2 \sin^2 i_{\text{tot}} \cos 2\omega_1]$$

$$\langle \mathcal{H}_{\text{oct}} \rangle = -\frac{15}{64} \mu_{12} \Phi_0 e_1 \varepsilon_{\text{oct}} [A \cos \phi + 10 \cos i_{\text{tot}} \sin^2 i_{\text{oct}} (1 - e_1^2) \sin \omega_1 \sin \omega_2]$$

$$\varepsilon_{\text{oct}} = \frac{m_1 - m_2}{m_1 + m_2} \frac{a_1}{a_2} \frac{e_2}{1 - e_2^2}$$

$$\mu_{12}\Phi_0 = \frac{m_1m_2}{m_1 + m_2} \frac{Gm_3a_1^2}{a_2^3(1 - e_2^2)^{3/2}}$$

- octupole term vanishes if m₁=m₂ (equal-mass inner binary) or e₂=0 (circular outer orbit)
- both a_{in} and a_{out} are conserved in the secular approximation ⇒ no energy exchange between inner and outer orbits (angular momentum exchange alone)

$$A = 4 + 3e_1^2 - \frac{5}{2}\sin^2 i_{\text{tot}}(2 + 5e_1^2 - 7e_1^2\cos 2\omega_1)$$

 $\cos\phi = -\cos\omega_1\cos\omega_2 - \cos i_{\rm tot}\sin\omega_1\sin\omega_2$

von Zeipel-Lidov-Kozai effect

- Takashi Ito and Katsuhito Ohtsuka (2019) "The Lidov–Kozai Oscillation and Hugo von Zeipel" Monogr. Environ. Earth Planets, 7, 1–113
- von Zeipel, H. (1910) "Sur l'application des séries de M. Lindstedt à l'étude du mouvement des comètes périodiques", Astronomische Nachrichten, 183, 345–418
- M.L. Lidov (1961) "Evolution of the orbits of artificial satellites of planets as affected by gravitational perturbation from external bodies" Artificial Earth Satellite, 8, 5–45
- Kozai, Yoshihide (1962) "Secular perturbations of asteroids with high inclination and eccentricity" The Astronomical Journal, 67, 591–598
- Naoz, S. (2016) "The eccentric Kozai–Lidov effect and its applications", Annual Reviews of Astronomy and Astrophysics, 54, 441–489

standard ZKL

 test particle limit (m₂=0) and circular outer orbit (e_{out}=0)
 angular momentum of the inner orbit along the total (outer) orbital axis is conserved

$$j_{1,z} = \sqrt{1 - e_1^2} \cos i_1 = \sqrt{1 - e_{1,\text{init}}^2} \cos i_{1,\text{init}}$$

inner eccentricity and inclination periodically change with

$$e_{1,\max} = \sqrt{1 - \frac{5}{3}\cos^2 i_{1,\min}}$$

$$39.2^{\circ} < i_{1,\text{init}} < 140.8^{\circ}$$

eccentric ZKL

• $e_{out} \sim 1 \Rightarrow$ more drastic effect due to the octupole term

examples of ZKL effects in secular approximation

Figure 3

ARAA 54(2016)44

S

Naoz,

Comparison between the test particle quadrupole (TPQ) formalism (dashed blue lines) and the full quadrupole calculation (solid red lines). The system has an inner binary with $m_1 = 1.4 M_{\odot}$ and $m_2 = 0.3 M_{\odot}$, and the outer body has mass $m_3 = 0.01 M_{\odot}$. The orbit separations are $a_1 = 5 \text{ AU}$ and $a_2 = 50 \text{ AU}$. The system was set initially with $e_1 = 0.5$ and $e_2 = 0$, $\omega_1 = 120^\circ$ and $\omega_2 = 0$, and relative inclination $i_{tor} = 70^\circ$. The panels

Figure 4

106

Small-mass outer perturber that induces large eccentricity excitation away from the nominal range of the Kozai angles of $39.2^{\circ}-140.77^{\circ}$. We consider $m_1 = 1 M_{\odot}, m_2 = 0.5 M_{\odot}, m_3 = 0.05 M_{\odot}, a_1 = 0.5 AU$, and $a_2 = 5$ AU. Both outer and inner eccentricities are set initially to zero, and also set initially are $\omega_1 = 90^\circ$ and $\omega_2 = 0^\circ$. We show two examples: The first shows the eccentricity excitations for as expected initial mutual inclination of $i_{\text{tot}} = 90^\circ$, where in this case $i_1 = 25.01^\circ$ and $i_2 = 64.99^\circ$. This produces eccentricity excitation with $e_{1,\text{max}} = 0.689$. We also consider an example for which the mutual inclination is set initially to be $i_{\text{tot}} = 158^\circ$. In this case $i_1 = 17.12^\circ$ and $i_2 = 140.88^\circ$. The latter parameters are adapted from Martin & Triaud (2015b), which leads to maximum inner eccentricity of $e_{1,\max} = 0.99$. Note that in both examples *i*₂ is close to the nominal Kozai angles range.

effects of octupole and general relativity

4 Search for star-blackhole binaries in optical surveys: a star-blackhole binary or a star-binary blackhole triple?

Generic picture of binary BH evolution

Proposals to search for star-BH binaries

Gaia mission (2013-)

Astrometry of stars in Galaxy $\sim 10^9$ stars eventually RV with 200-350m/s precision for brightest stars (Katz 2018)

Yamaguchi+ (2018)

5-year mission may detect 200-1000 star-BH binaries

TESS mission (2018-)

photometry of nearby stars (~ 12mag) transit planets

Masuda & Hotokezaka (2019)

Light curve modulation (relativistic effects, tidal deformation) $\Rightarrow (10 - 100)$ star-BH binaries may be identified

Some of them may be indeed a star-binary BH triple! Can precise radial velocity follow-up unveil the inner BBH?

Gaia BH-1 $0.93M_{\odot}$ G star + $9.6M_{\odot}$ BH (P_{orb}=186days) at d=477pc eccentricity ~ 0.45

MNRAS

Comparison of Gaia BH1 and BH2 to other known BHs. Red and blue symbols correspond to accreting BHs with low- and high-mass companions. Magenta symbols show detached binaries in the globular cluster NGC 3201, and cyan points show detached binaries in which the luminous star is a high-mass (>20 M_{\odot}) star.

Comparison of Gaia BH1 and BH2 (black points) to known Galactic BHs in the plane of distance and quiescent optical magnitude

5 Dynamical signature of triple systems with an inner binary black-hole

Radial velocity modulation of a tertiary star due to an inner binary

RV modulations for coplanar triples

Approximate expressions for RV of the tertiary star

$$V_{\rm RV}(t) = V_{\rm Kep}^{(0)}(t) + \delta V_{\rm Kep}(t) + V_{\rm bin}(t)$$

(i) Unperturbed Kepler motion

$$V_{\text{Kep}}^{(0)}(t) = K_0 \sin I_{\text{out}} \cos[\nu_{\text{out}} t + f_{\text{out},0} + \omega_{\text{out}}]$$

$$K_0 \equiv rac{m_1 + m_2}{m_1 + m_2 + m_*} a_{
m out}
u_{
m out},$$

(ii) Perturbation to the Kepler motion

$$\delta V_{\text{Kep}}(t) = K_1 \sin I_{\text{out}} \cos[\nu_{\text{out}}t + f_{\text{out},0} + \omega_{\text{out}}]$$

 $K_1 \equiv \frac{3}{4} K_0 \left(\frac{a_{\text{in}}}{a_{\text{out}}}\right)^2 \frac{m_1 m_2}{(m_1 + m_2)^2}.$

Morais & Correia (2008) Hayashi & YS (2020)

$$\nu_{-3} \equiv 2\nu_{\rm in} - 3\nu_{\rm out},$$

$$\nu_{-1} \equiv 2\nu_{\rm in} - \nu_{\rm out}.$$

$$\begin{split} V_{\rm bin}(t) &= -\frac{15}{16} K_{\rm bin} \sin I_{\rm out} \cos[(2\nu_{\rm in} - 3\nu_{\rm out})t] \\ &+ 2(f_{\rm in,0} + \omega_{\rm in}) - 3(f_{\rm out,0} + \omega_{\rm out})] \\ &+ \frac{3}{16} K_{\rm bin} \sin I_{\rm out} \cos[(2\nu_{\rm in} - \nu_{\rm out})t] \\ &+ 2(f_{\rm in,0} + \omega_{\rm in}) - (f_{\rm out,0} + \omega_{\rm out})], \end{split}$$
$$K_{\rm bin} &\equiv \frac{m_1 m_2}{(m_1 + m_2)^2} \sqrt{\frac{m_1 + m_2 + m_*}{m_1 + m_2}} \left(\frac{a_{\rm in}}{a_{\rm out}}\right)^{7/2} K_{\rm cont}$$

RV modulations for non-coplanar triples

30 data/100 days triple, $e_{in} = 10^{-5}$, $e_{out} = 10^{-5}$ period ~ $P_{\rm in}/2$

Kepler motion + Short-term RV variations (inner-binary perturbation)

(ii) Non-coplanar triple

high-precision RV follow-up

Keplerian motion RV

+ RV variations by inner binary К_{Кер}

Inclination $I_{out}(t)$ modulated in the Kozai-Lidov timescale

$$P_{\text{out}} \qquad K_{\text{Kep}}(t) = K_0 \sin I_{\text{out}}(t)$$

Amplitude of Kepler RV varies with the timescale

Parameters for simulated triple systems

 $P_{out} = 78.9 \text{ days}$ $P_{in} = 10 \text{ days}$ equal-mass binary 10M $_{\odot}$ + 10M $_{\odot}$ unequal-mass binary 2M $_{\odot}$ + 18M $_{\odot}$ direct N-body (N=3) simulation without secular approximation Hayashi & YS 2020, ApJ, 897, 29

Model	$I_{\rm out}$ (deg)	I _{in} (deg)	i _{mut} (deg)	$m_1 (M_{\odot})$	$m_2 (M_{\odot})$	p.
P1010	90	90	0	10	10	10^{-5}
PE1010	90	90	0	10	10	0.2
R1010	90	270	180	10	10	10^{-5}
O1010	0	90	90	10	10	10^{-5}
I1010	0	45	45	10	10	10^{-5}
P0218	90	90	0	18	2	10^{-5}
PE0218	90	90	0	18	2	0.2
R0218	90	270	180	18	2	10^{-5}
O0218	0	90	90	18	2	10^{-5}
I0218	0	45	45	18	2	10^{-5}

Note. P, PE, R, O, and I indicate prograde, prograde eccentric, retrograde, orthogonal, and inclined orbits.

Coplanar circular Prograde equal-mass

Simulation against Perturbative model (Morais & Correia 2008, 2012)

> Retrograde equal-mass

> > Prograde

unequal-mass

$$u_{-3} \equiv 2\nu_{\rm in} - 3\nu_{\rm out},$$
 $u_{-1} \equiv 2\nu_{\rm in} - \nu_{\rm out}.$

P1010 P1010 -3 -1 +1 +3100 equation (23) Simulation Lomb-Scargle 400 variation(m/s) periodogram 200 ≥ -200 V V 10latio -40010^{-5↓} 10⁻² 100.0 100.2 100.4 100.6 100.8 101.0 10^{-1} $t/P_{\rm out}^{(0)}$ frequency(1/day) R1010 R1010 -3 -1 +1 +3100 300 equation (23) Simulation 200 Lomb-Scargle Power 10-1 Lomb-Scargle Power 10-2 variation(m/s) 100 0 10-3 100 -200 10^{-4} -300 10^{-5↓} 10⁻² 100.0 100.2 100.4 100.6 100.8 101.0 10-1 $t/P_{out}^{(0)}$ frequency(1/day) P0218 P0218 -3 -1 + 1 + 3100 equation (23) 200 Simulation 150 Power RV variation(m/s) 100 Lomb-Scargle F 50 0 10-3 -50J V 10-4 -10010^{-5⊥} 10⁻² -150100.0 100.2 100.4 100.6 100.8 101.0 10-1 t/P(0) frequency(1/day)

Coplanar eccentric triples

Simulation against Perturbative model (Morais & Correia 2008, 2012)

Prograde equal-mass

Prograde unequal-mass

Evolution of radial velocity for non-coplanar triples

Z

Inclined equalmass binary

Precession timescale

$$\frac{P_{\Omega}}{P_{\text{out}}} \approx \frac{80.7}{\cos i_{\text{mut}}} \left(\frac{m_1 + m_2 + m_*}{23 \, M_{\odot}} \right) \left(\frac{m_*}{3 \, M_{\odot}} \right)^{-1} \\ \times \left(\frac{P_{\text{out}}}{78.9 \text{ days}} \right) \left(\frac{P_{\text{in}}}{10.0 \text{ days}} \right)^{-1}$$

Kozai-Lidov timescale

$$\frac{T_{\rm KL}}{P_{\rm out}} = \frac{m_1}{m_*} \left(\frac{P_{\rm out}}{P_{\rm in}}\right) (1 - e_{\rm out}^2)^{3/2}$$
$$\approx 26 \left(\frac{m_1}{10 M_{\odot}}\right) \left(\frac{m_*}{3 M_{\odot}}\right)^{-1}$$
$$\times \left(\frac{P_{\rm out}}{78.9 \text{ days}}\right) \left(\frac{P_{\rm in}}{10 \text{ days}}\right)^{-1}$$

Constraints on the binarity of Gaia BH1 and BH2 from short-term RD modulations

Conclusions: signature of inner binary black holes in triple systems

 Radial velocity (RD) monitoring of future star-black hole binary candidates may reveal inner binary black holes (instead of single black holes) in those systems

short-term RD variations
Hayashi, Wang + YS: ApJ 890(2020)112

periodic modulations of O(1) percent of the Kepler orbital velocity amplitude with a half inner orbital period Hayashi + YS:

ApJ 897(2020)29

Iong-term RD variations in inclined triples

the semi-amplitude of the Kepler orbital velocity modulated periodically by the precession (and the ZKL oscillation) of the inner and outer orbits over (10-100)(P_{out}/P_{in})P_{out}