### Exploring warm/hot intergalactic medium with DIOS (Diffuse Intergalactic Oxygen Surveyor)

### Department of Physics University of Tokyo

Yasushi Suto





cosmology seminar (11:00am-, October 20, 2005)



THE UNIVERSITY OF TEXAS AT AUSTIN

#### Recent Activities of Observational Cosmology Group, University of Tokyo (1) SDSS galaxy and guasar statistics

- topological analysis of galaxy distribution (Hikage et al. 2003, 2004; Park et al. 2005)
- phase correlation statistics of SDSS galaxies (Hikage, Matsubara, Suto et al. 2005)
- 3pt correlation functions of SDSS galaxies (Kayo, Suto, Nichol et al. 2004)
- widest-separation lensed quasar from SDSS (Inada et al. 2003; Oguri et al. 2004)
- 2pt correlation functions of SDSS quasars and cosmological constant (Yahata et al. 2005)
- constraints on the deviation from Newton's law of gravity from SDSS galaxy power spectrum (Shirata, Shiromizu, Yoshida & Suto 2005)

testing the Galactic dust map against SDSS galaxy number counts (Yahata et al. in preparation)

2

### Recent Activities of Observational Cosmology Group, University of Tokyo (2)

#### Dark halo and galaxy cluster

- triaxial modeling of dark matter halos (Jing & Suto 2002; Oguri, Lee & Suto 2003; Lee, Jing & Suto 2005)
- highest-angular resolution SZ maps in submm and mm (Komatsu et al. 1999, 2001; Kitayama et al. 2004)

### Warm/hot intergalactic medium (WHIM)

- a proposal of oxygen emission line search (Yoshikawa et al. 2003, 2004)
- feasibility of an absorption line search with XEUS along a GRB afterglow (Kawahara et al. 2005)

### Spectroscopy of transiting extrasolar planets

 constraints on planetary atmosphere (Winn et al. 2004; Narita et al. 2005)

 first detection of the spin-orbit misalignment in an extrasolar planetary system using the Rossiter effect (Ohta, Taruya & Suto 2005; Winn et al. 2005)

### Most of the cosmic baryon is "dark"



### Goal: the cosmic baryon budget

- WHIM (warm/hot intergalactic medium) is a generic consequence in the standard structure formation scenario
- Iocate WHIM and establish a new observational window of the universe via soft X-ray spectroscopy

Can we understand the dark sides of the universe in foreseeable future ?

Dark matter

maybe new results from on-going experiments in next 5-10 years, but not from astronomy

### Dark energy

unlikely to have any breakthroughs from future experiments and/or theories in high energy physics in this century

astronomy is the key !

### Dark baryons

only astronomical observations can make a scientific new contribution since high-energy physicists already know baryons too well !

### Simulated distribution of matter in the universe

(30h<sup>-1</sup>Mpc)<sup>3</sup> box around a massive cluster at z=0

ACDM SPH simulation (Yoshikawa, Taruya, Jing & Suto 2001)



### Four phases of cosmic baryons Dave et al. ApJ 552(2001) 473

<u>Condensed</u>: δ > 1000, T < 10<sup>5</sup>K
 Stars + cold intergalactic gas

- <u>Diffuse:</u> δ < 1000, T < 10<sup>5</sup>K
  - Photo-ionized intergalactic medium
     Ly α absorption line systems
- <u>*Hot:*</u> T>10<sup>7</sup>K

X-ray emitting hot intra-cluster gas

■ <u>*Warm-hot:*</u> 10<sup>5</sup>K<T<10<sup>7</sup>K

Warm-hot intergalactic medium (WHIM)





# Three complementary methods to search for dark baryons

- absorption line systems of OVI, OVII and OVIII along background QSOs in UV and soft X-ray
- → several detections reported with FUSE,
   Chandra, and XMM/Newton (e.g., Fang et al. 2002, Fujimoto et al. 2004, Nicastro et al. 2005)
- emission line survey (mainly of OVII and OVIII)
- $\rightarrow$  goal of DIOS (Yoshikawa et al. 2003, 2004)
- absorption line systems along a GRB afterglow in soft X-ray
- → feasible with XEUS (X-ray Evolving Universe Spectroscopy) (Fiore et al. 2000, Kawahara et al. 2005)

### **Emission lines of oxygen in WHIM**

### Ovii (561eV, 568eV, 574eV, 665eV), Oviii (653eV)

### Why oxygen emission lines ?

- Most abundant other than H and He
- Good tracers of gas around T=10<sup>6</sup>~10<sup>7</sup> K
- No other prominent lines in E=500-660eV
- Not restricted to regions towards background QSOs





### **Requirements for detection**



Good energy resolution to identify the emission lines from WHIM at different redshifts

■  $\Delta E < 5eV \implies X$ -ray calorimeter using superconducting TES (Transition Edge Sensor)

Large field-of-view and effective area for survey

■  $S_{eff} = 100 cm^2$ ,  $\Omega = 1 deg^2 \Rightarrow 4$ -stage reflection telescope

 Angular resolution is not so important (but useful in removing point source contaminations)

$$\theta \approx 1^{\circ} \left( \frac{600 \, h^{-1} \mathrm{Mpc}}{D} \right) \left( \frac{L}{10 \, h^{-1} \mathrm{Mpc}} \right)$$

### **DOS:** <u>D</u>iffuse <u>Intergalactic</u> <u>Oxygen</u> <u>S</u>urveyor

A Japanese proposal of a dedicated X-ray mission to search for dark baryons



PI: Takaya Ohashi (Tokyo Metropolitan Univ.)

- + Univ. of Tokyo, JAXA/ISAS, Nagoya Univ., Tokyo Metro. Univ.
- A dedicated small satellite with cost < 40M USD</p>
- Proposed launch in 2010 (not yet approved; looking for international collaboration)
- Unprecedented energy spectral resolution: △E=2eV in soft X-ray band (0.3-1.5keV)
- Aim at unambiguous detection of WHIM via Oxygen emission lines
- Estimate the dark baryon (WHIM) density contribution to the total cosmic baryon budget

### **DIOS Spacecraft**

- Launch Target ~2010 (before NeXT mission ~2012)
   Launch Vehicle
  - M5 light/H2-A piggy bag (TBD)

| Weight   | Total    | ~ 400 kg         |
|----------|----------|------------------|
|          | Payload  | ~ 200 kg         |
| Size     | Launch   | 1.2×1.45×        |
|          |          | 1.4 m            |
|          | In orbit | 5.9×1.45×        |
|          |          | 1.4 m            |
| Attitude | Control  | 3-axis           |
|          | Accuracy | $\leq$ 10 arcsec |
| Power    | Total    | 600 W            |
|          | Payload  | 340 W            |

Altitude: ~ 550 km Inclination: 30° Period: 95 min 5.9M ۲ . س

#### Incl. 20% contingency

### X-ray Optics: 4 stage thin foil mirror



Max. inc. angle = 2.5 deg @ r=250 mm Mirror thickness=0.15 mm, Nesting : 180

 Fabrication of test model started at Nagoya Univ.



## Focal length 1/2 of 2-stage mirror

Compact system
Small detector for a given f o v

Vlandre

**Replica foil mirror** 

# DIOS: comparison with other missions





Very high sensitivity (SΩ and ΔE) in detecting oxygen emission lines
 Intensity ratios of the lines reveal the temperature and ionization condition of WHIM

### Searching for dark baryons with DIOS (Diffuse Intergalactic Oxygen Surveyor)





**Univ of Tokyo:** K. Yoshikawa Y.Suto **JAXA/ISAS:** N. Yamasaki K. Mitsuda **Tokyo Metropolitan Univ.:** T. Ohashi Nagoya Univ.: Y. Tawara A. Furuzawa

### Light-cone output from simulation



- Cosmological SPH simulation in Ω<sub>m</sub>=0.3,
   Ω<sub>Λ</sub>=0.7, σ<sub>8</sub>=1.0, and h=0.7 CDM with N=128<sup>3</sup> each for DM and gas (Yoshikawa, Taruya, Jing, & Suto 2001)
- Light-cone output from z=0.3 to z=0 by stacking 11 simulation cubes of (75h<sup>-1</sup>Mpc)<sup>3</sup> at different z
   5° × 5° FOV mock data in 64x64 grids on the sky
   128 bins along the redshift direction (∆z=0.3/128)

### Surface brightness on the sky





### Locating the WHIM in the local universe

Yoshikawa, Dolag, Suto, Sasaki, Yamasaki, Ohashi, Mitsuda, Tawara, Fujimoto, Furusho, Furuzawa, Ishida, Ishisaki & Takei PASJ 56(2004)939, astro-ph/0408140

Simulation by Dolag et al. (astro-ph/0310902)

 Initial condition: smoothing the observed density field of IRAS 1.2 Jy galaxy survey (over 5h<sup>-1</sup>Mpc), linearly evolving back to z=50

adiabatic run of dark matter and baryons (without cooling or feedback) in a canonical ACDM model

see also

- Viel et al. MNRAS 360(2005)1110
- Zichichi et al. (2005)

### Simulated local universe vs. 2MASS map





Soft X-ray map of the simulated local universe (Yoshikawa et al. 2004)

### Simulated gas distribution on the supergalactic plane



#### gas temperature



# (adopted) metallicity

<u>2</u>1

# Mock observation of X-ray filament extending around simulated A3627



### Mock observation of simulated Coma



Surface brightness map [erg s<sup>-1</sup>cm<sup>-2</sup>sr<sup>-1</sup>]

### a small clump in front of simulated Coma

107

106

10<sup>8</sup>





Surface brightness map [erg s<sup>-1</sup>cm<sup>-2</sup>sr<sup>-1</sup>]

10-8

10-6

10-4



### Soft X-ray excess of Coma

 XMM-Newton observations of the outskirts of Coma (Finoguenov, Briel & Henry 2003, A&A 410, 777)
 associated X-ray filament of 0.2keV warm gas ?

an intervening WHIM clump along the line of sight ?



Yoshikawa et al. (2004)

# Fraction of cosmic dark baryons detectable via oxygen "emission"



Yoshikawa et al. (2004)

### Searching for dark baryons via absorption line systems in a Gamma-ray burst afterglow

H.Kawahara, K.Yoshikawa, S.Sasaki, Y.Suto, N.Kawai, T.Ohashi, N.Yamasaki & K.Mitsuda astro-ph/0504594 (submitted to Pub.Astron.Soc.Japan 2005)

- first proposed by Fiore et al. (2000)
- can probe higher z
- can search for emission line counterparts later
- see also Viel et al. MNRAS 341(2003)792



• Average spectrum fitted by Piro (2004)  $F_{GRB}(t, E) = F_0 \left(\frac{t}{40 \text{k sec}}\right)^{-1.2} \left(\frac{E}{1 \text{keV}}\right)^{-1.13} \text{erg s}^{-1} \text{cm}^{-2} \text{keV}^{-1}$ • Frequency of GRB afterglow with

 $F > F_0 = 6 \times 10^{-11} \text{ erg/s/cm}^2/\text{keV}$ 

 $\rightarrow$  ~40/year/sky (from 6 years' BeppoSAX data)

 observing strategy: start of the observation and exposure time for 5000 photons/eV@500eV with XEUS (unfortunately impossible with DIOS...)

•  $t_i = 1$  hour and  $t_{exp} = 5$  ksec (for  $F_0$ )

- $t_i = 2$  hour and  $t_{exp} = 12$  ksec (for  $F_0$ )
- $t_i = 1$  day and  $t_{exp} = 15$  ksec (for  $10F_0$ )



0.3

### Statistics of absorption line systems assuming collisional and photo-ionization equilibrium under CXB (Miyaji et al. 1998) and UVB (Shull et al. 1999)



Kawahara et al. (2005)

# baryon fraction detectable by absorption lines in the GRB afterglow



W: equivalent width R<sub>H</sub>(>W): cumulative gas mass fraction  $R_{H}(>W) = \frac{\sum_{i=1}^{6400} N_{H,i}^{sim}(>W)}{\sum_{i=1}^{6400} N_{H,i}^{sim}(>0)}$ 

### Prospects for dark baryon search via WHIM spectroscopy



 DIOS will detect dark baryons in the form of WHIM from oxygen emission line survey (Yoshikawa et al. 2003)

•  $\Delta E = 2eV$ ,  $S_{eff} \Omega = 100 [cm^2 deg^2]$ ,  $T_{exp} = 10^5 s$ , S/N=10

• flux limit =  $6x10^{-11}$  [erg/s/cm<sup>2</sup>/sr]

 DIOS will detect WHIM at outskirts of known galaxy clusters in the local universe (Yoshikawa et al. 2004)

origin of soft X-ray excess reported for clusters (e.g., Coma)

 XEUS will identify ~1 OVII absorption line system along a bright GRB (40 per year) with >3σ (Kawahara et al. 2005)

interesting but statistics is inevitably limited

 estimate of baryon density is subject to big uncertainties such as temperature and metallicity ... complementary to emission line study

### Thanks !

This presentation file is located at http://www-utap.phys.s.u-tokyo.ac.jp /~suto/mypresentation\_2005e.html