Warm-Hot Intergalactic Medium

銀河(Cold ガス)

Warm $JJ(10^{5}K < T < 10^{7}K)$

Hot ガス(T>10⁷K)

銀河間物質探索ミッション検討会 @東京都立大学、2002年6月5日

(30h⁻¹Mpc)³ box from SPH simulation in CDM @ z=0 by 吉川耕司

Cosmic Baryon Budget

Component	Central	Maximum	Minimum	Grade ^a
Observed at $z \approx 0$				
 Stars in spheroids	$\begin{array}{c} 0.0026 \ h_{70}^{-1} \\ 0.00086 \ h_{70}^{-1} \\ 0.000069 \ h_{70}^{-1} \\ 0.00033 \ h_{70}^{-1} \\ 0.00030 \ h_{70}^{-1} \\ 0.0026 \ h_{70}^{-1.5} \\ 0.0056 \ h_{70}^{-1.5} \\ 0.002 \ h_{70}^{-1} \\ 0.014 \ h_{70}^{-1} \\ 0.021 \end{array}$	$\begin{array}{c} 0.0043 \ h_{70}^{-1} \\ 0.00129 \ h_{70}^{-1} \\ 0.000116 \ h_{70}^{-1} \\ 0.00041 \ h_{70}^{-1} \\ 0.00037 \ h_{70}^{-1} \\ 0.00044 \ h_{70}^{-1.5} \\ 0.0115 \ h_{70}^{-1.5} \\ 0.003 \ h_{70}^{-1} \\ 0.030 \ h_{70}^{-1} \\ 0.041 \end{array}$	$\begin{array}{c} 0.0014 \ h_{70}^{-1} \\ 0.00051 \ h_{70}^{-1} \\ 0.000033 \ h_{70}^{-1} \\ 0.00025 \ h_{70}^{-1} \\ 0.00023 \ h_{70}^{-1} \\ 0.00023 \ h_{70}^{-1} \\ 0.0014 \ h_{70}^{-1.5} \\ 0.0029 \ h_{70}^{-1.5} \\ 0.0007 \ h_{70}^{-1} \\ 0.0072 \ h_{70}^{-1} \\ 0.007 \end{array}$	A A A A A B C B
	Fukugita, Ho	gan & Peebles	: ApJ 503(199	8)518
$\Omega_{star} + \Omega_{HI} + \Omega_{H_2} + \Omega_{hot X-ray}$	$= 0.0068^{+0.004}_{-0.003}$	${}^{1}_{0}$ vs Ω_{BBN}	= 0.04 (<i>h</i> =	= 0.7)
 現在の宇宙で観測されているバリオンは元素合成理 論予言値の(10~50)%: where are the baryons ? 				

Four phases of cosmological baryons

Dave et al. ApJ 552(2001) 473

WHIM simulationの文献

- **1.** Hellsten, Gnedin & Miralda-Escude: ApJ 509(1998)56 "The X-ray forest: a new prediction of hierarchical structure formation models"
- **2.** Cen & Ostriker: ApJ 514 (1999) 1 *"Where are the baryons ?"*
- **3.** Dave et al.: ApJ 552 (2001) 473

"Baryons in the warm-hot intergalactic medium"

- 4. Phillips, Ostriker & Cen: ApJ 554 (2001) L9 "Is there still room for warm/hot gas ? Simulating the X-ray background spectrum"
- **5. Cen et al.: ApJ 559 (2001) L5** *"Revealing the warm-hot intergalactic medium with O*

absorption"

OVII & OVIII absorption systems in X-rays

OVI UV doublets 1032 , 1038 OVII 21.6 (574.0 eV) OVIII 19.0 (653.6 eV)

Where are the baryons (Cen & Ostriker 1999)

z=0のバリオンの(30~40)%は、 10^{5} K<T< 10^{7} K の Warm-Hot Intergalactic Medium (WHIM) !

Warm/hot gas (10⁵K<T<10⁷K) Cen & Ostriker : ApJ 514 (1999) 1

WHIMの温度の定性的評価

 スケールLの宇宙論的密度揺らぎが時刻tで重力収縮したとする。その結果、衝撃波が形成されると、音速c_sは落下速度 v~L/t~H(t)Lと同程度になるはず(Cen & Ostriker 1999)。
 この議論は、衝撃波加熱によるガス温度の上限値を与えるも

のと解釈できるが、これをもってWHIMの典型的温度スケール を与えていると考えられなくもない(いかにもOstriker 的な、 楽しいけど怪しい論理)。

$$c_s^2 = \kappa (HL_{nl})^2 \implies kT_{gas} = \frac{\mu m_H c_s^2}{\gamma} = \frac{\mu m_H}{\gamma} \kappa (HL_{nl})^2$$

≈ 0.11(HL_{nl})² GeV ($\kappa = 0.3$)
例えば $z = 0$ では、 $T_{gas} \approx 0.11(8/3000)^2$ GeV $\approx 9 \times 10^6$ K

WHIM simulationの相互比較 (Dave et al. 2001)

WHIMの温度・密度の進化と相関 (Dave et al. 2001)

10

Effect on X-ray background (Phillips et al. 2001)

WHIMは、(0.5~2) keVのエネルギー領域で、 0.24×10⁻¹² erg/s/cm²/deg²、すなわち、全X線 背景輻射の(5~15)%の寄与をする。

Simulated XRB map (Croft et al. 2001)

12

OVI UV absorption systems (Cen et al. 2001)

Collisionally ionized OVI (T>10⁵K)

等価幅が35m 以上のOvi吸収線系が、 単位赤方偏移あたり5つ程度あることが 予言される(350m 以上の場合は0.5)

Tracing the structure with Oxygen (from R.Cen's HP)

Dark matter

Baryons

Galaxies

Ovi

Ovii

Oviii

手持ちのSPH simulationの概要

cosmological hydrodynamic simulations

- P³M gravity solver + SPH for gas
- CDM: $\Omega_0 = 0.3$, $\lambda_0 = 0.7$, h = 0.7, $\sigma_8 = 1.0$, $\Omega_b = 0.015 h^{-2}$
- $N_{DM} = 128^3$, $N_{gas} = 128^3$ in $L_{box} = 75h^{-1}Mpc$ box $m_{DM} = 2.2x10^{10}M_{sun}$, $m_{gas} = 2.4x10^9M_{sun}$
- friend-of-friend法でハロー・銀河を同定
 - $//\Box$: $M_{halo} = (10^{12} \sim 10^{14}) M_{sun}$
 - $\delta_{\text{halo}} > \Delta_{\text{vir}}(z) \sim 18\pi^2 \Omega(z)^{-0.6}$

• "銀河"(cold gas clumps): $M_{gal} = (10^{11} \sim 10^{12}) M_{sun}$ Jeans条件、 $\rho_{gas} > 100 \rho_{b}(z)$ 、 $\delta_{gal} > 180 \pi^{2} \Omega_{0}(1+z)^{-3}$

(Yoshikawa, Jing & Suto 2000; Yoshikawa, Taruya, Jing & Suto 2001)

手持ちのSPH simulationの分解能の例

5h⁻¹Mpc

75h⁻¹Mpc

20h⁻¹Mpc

SPH simulations in LCDM (Yoshikawa, Taruya, Jing & Suto 2001)

Large-scale structure in SPH simulations

(75h⁻¹Mpc)³ box CDM @ z=0 128³個のダークマター 128³個のガス粒子 輻射冷却、ショック加熱 冷えた粒子を銀河と定義 (by 吉川耕司)

全ガス粒子

銀河(Cold ガス)

 $Warm \textbf{JZ}(10^5 K < T < 10^7 K)$

Cluster region in SPH simulations

Massive cluster を中心 とした(30h⁻¹Mpc)³ box におけるガス・銀河・ ダークマター分布 CDM @ z=0 (by 吉川耕司)

全ガス粒子

Hot ガス(T>10⁷K)

Warm $JJ(10^{5}K < T < 10^{7}K)$

WHIMの現状での理解のまとめ

- 現在の宇宙の全バリオンの(30~40)%は、 10⁵K<T<10⁷KのWarm-Hot Intergalactic Medium (WHIM)として存在しているはず。
- WHIMは、銀河団と銀河団をつなぐフィラメントに沿っ てdiffuseに分布しているものと考えられ、小さい塊と しては銀河群もそこに存在する。
- WHIMの検出は困難
 - 紫外線領域でのOVI吸収線系(1032 , 1038 ダブレット)
 - X線領域でのOVII(574.0 eV)及びOVIII (653.6 eV)吸収線系 探査(X-ray forest, X-ray Gunn-Peterson test)
 - Soft X-ray background spectrumのバンプ(一割程度の寄与) および近傍銀河(団)との空間相関

WHIM研究の目的とその意義

