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Collaborators

= This talk is based on my collaboration
with
= Daichi Suto (Univ. of Tokyo)
= Ken Osato (Univ. of Tokyo),
= Tetsu Kitayama (Toho Univ.)
= Shin Sasaki (Tokyo Metropolitan Univ.)

= Still one-going and preliminary work !



Spherical dust collapse (SDC) model

s The most basic model of structure formation

= Everybody knows that it is just a simple
approximation, but still widely used even in
precision cosmology:

= e.g., Dark matter halo abundance vs. cluster
mass and temperature functions to determine
cosmological parameters

= Attempts for improvement
= Non-sphericity (e.g., Jing & Suto 2002)
= inhomogeneities (e.g., Kawahara et al. 2007)
= Shell-crossing and velocity dispersions (this talk)



Comparison of the SDC model
predictions against N-body results

= Dark matter only simulations with GADGET-2
= ACDM with WMAP9 cosmological parameters
s N=10243 in L=360 Mpc h-1
s M=3.4 x 10° M@

= FOF halos identified at z=0

= compute the spherical mass M and radius R of
spherical overdensity of A=p/p,,=355.4

= Identifies the center-of-mass of the z=0 FOF halo
particles at z, and compute the radius R(z)
enclosing the mass M at 0<z<z, i, = 99



The most massive halo
with M=1.66x101> M,

Red: FOF particles at z=0
Black: non-FOF particles

Red curve: SDC prediction
with 8(z=99) of the simulation
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Generic trends from 100 simulated halos

= Very good quantitative agreement until the
turn-around epoch

= may be reasonable but not trivial at all, given
the small-scale clumping, subhalo mergers
inside, and/or the filamentary structure across
the entire region

= Systematic difference relative to SDC
predictions after the turn-around epoch

= Delay of the turn-around epoch

= Larger turn-around radius

= Larger “virialized” radius




Evolution of a halo(M=1.66x10%> M)
in phase space (comoving coordinate)




Effect of velocity dispersions

= Jeans equation for spherical collisionless system
= radial velocity dispersion ¢,?
= tangential veIocity dispersion otz

= SDC assumes an initially top-hat
(homogeneous) sphere

= Neglects small-scale inhomogeneities, shell-crossing
before turn-around, and thus no o2 or 6,

m Larger t,1-aroung @Nd Ryiio than predicted by SDC



Improvement with velocity dispersions

= Evaluate the velocity dispersions from
simulation data and solve the Jean equation

= Greatly improved !
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Phase-space distribution in redshift space:
line-of-sight velocity vs. projected radius
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Phase-space distribution in redshift space:
line-of-sight velocity vs. projected radius
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Phase-space distribution in redshift space:
line-of-sight velocity vs. projected radius
M=1.66 X105 My, z=0.1 |EuAAT
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Phase-space distribution in redshift space:
line-of-sight velocity vs. projected radius
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Comparison among characteristic scales

Oy (r,.2)=1

0, (1. 2)=1

r00(Z

projected e-folding radius 2Rs,(z)

= Projected e-folding scales 2R ,(z)~Rs(z) ~R,(2)
are close to conventional “virial” radii (r,o, Or ry)

. r2nd apocenter~0'367rta Clgle r3rd apocenter~0'236rta in
Bertschinger’s solution (1985, ApJS, 58, 39)



Splashback in accreting dark halos

S. Adhikari, N. Dalal & R. T.
Chamberlain, arXiv:1409.4482

= Physical definition of halo size
= splashback radius ?

= first apoapse after collapse

s Ensemble of halos from
cosmological simulation

= Clear signature in density
profile of ensemble of halos

= Not easy to determine the
splashback radius from a single
halo (at least observationally)



The splashback radius as a physical halo
boundary and the growth of halo mass

S. More, B. Diemer & A. V. Kravtsov,
arXiv:1504.05591



Signature of the splashback radius ?

= Line-of-sight
velocity of
galaxies in
X-ray
selected
clusters

= Rines et al.
@A)



Relation to Splashback radius ?
M=1.66 X 105 M,

= Qualitative agreement between our
projected e-folding radius R and
the splashback radius

= Our definition (e-folding scale in
redshift space) is more _releva_nt s. Adhikari, N. Dalal & R. T
from an observational viewpoint  chamberlain, arXiv:1409.4482



Bertschinger’s self-similar solution

turn-around 2 r
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3rd apocenter

= Self-similar shell crossing of collisionless

spherical secondary infall
Bertschinger 1985, ApJS, 58, 39




Scaled evolution of constant mass shells:
rm(z) with M(<ry)=const. in the halo

M=1.66x10">

= usual assumption (r,,=r./2) is not accurate
= Mixing of different mass shells is not complete



Motion of constant mass shells
for 4 different halos



“Virialized” mass shells change:
not constant but oscillating

\\ ??x\s \j

M=1.66><§1015 M,
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= Each mass shell continues to oscillate within
the halo; halos are not static but dynamical




“Virialized” mass shells change:
not constant but oscillating

AN }J

s Each mass shell continues to oscillate within
the halo; halos are not static but dynamical



“virialized” densities
within different mass shells

M=1.66 X 10'5 M,

= Not constant

= Large
coherent
modulation



Summary

= Spherical dust collapse model for dark matter
halos is oversimplified

= Better model is required for cluster cosmology,
and indeed already overdue

= We focus on the effect of velocity dispersions

= Delays the turn-around epoch, increases the
virial radius

= Confirmed by solving the Jeans equation

= Interesting scaling behavior of halo collapse

= Virialized” halos are not static but dynamical,
and indeed oscillating !



Future outlook

= Observational signhature of the oscillating
feature ?

= affects the gas dynamics as well ?
= Hydro-dynamical simulations to check ?
= X-ray vs. weak lensing ?

= Toy model to describe the oscillation ?
= Empirical scaling model ?
= Modeling velocity dispersions ?



