自転する初代星の元素合成計算

高橋 こう ${ }^{1}$ ，梅田秀之 ${ }^{1}$ ，吉田敬 ${ }^{2}$
${ }^{1}$ Department of Astronomy，The University of Tokyo ${ }^{2}$ Yukawa Institute for Theoretical Physics，Kyoto University

背景の説明
－何をしたか／何をするか，何のために
恒星進化計算をした 低金属星組成を説明したい…
－先行研究の紹介
説明できない元素が存在（たとえばNに注目）
－回転星進化コードについて
新しい効果。

初代星進化計算

- 無回転モデルの進化
- 回転混合でなにが変わるか
- 議論

恒星進化になにが出来るか

初代星の進化理論は

 いろんな分野と関係します。－初期宇宙の環境 Ekstroem＋2008
\longrightarrow 光子量， SN, BH 形成
－大質量星進化計算
\longrightarrow SN／GRB progenitor

Yoon＋ 2012
－金属欠乏星の豊富な組成データ
\longrightarrow abundance profilingによる理論検証

Umeda\＆Nomoto 02， 05
Limongi\＆Chieffi 03
Heger\＆Woosley 10
（cf．須田，富永talk）

初代星のYield計算（1）

－Umeda \＆Nomoto（03）

0.3 foeなど

恒星進化計算の結果から．．．

Figure 2 The post－explosion abundance distributions for the population III $25 M_{\odot}$ mode
with explosion energy $E_{51}=0.3$ ．Explosive nucleosynthesis takes place behind the
shock wave that is generated at $M_{\mathrm{r}}=1.8 M_{\odot}$ and propagates outwards．The hydrogen． rich envelope at $M_{\mathrm{r}}>9 M_{\odot}$ is not shown．

初代星のYield計算（2）

－Tominaga et al．（13）

various parameters

25 Msunの爆発で組成を説明。よさそうだけど．．．

初代星のYield計算（3）

いくつかの元素は説明が難しい。

回転星コードの開発

1 次元恒星進化コード（Takahashi＋13，Umeda＋12，Yoshida＋11）十自転運動の考慮

- 遠心力の考慮（Endal \＆Sofia 76）
- 流体不安定由来の混合•角運動量輸送（Pinsonneault＋89）

不安定性には以下を考慮
－meridional circulation（温度の不均一）
－dynamical \＆secular shear inst．（シェア）

- Solberg－Hoiland inst．（遠心力勾配）
- Goldreich－Schubert－Fricke inst．（筒状回転からのずれ）
- Spruit－Tayler dynamo（磁場のkink不安定）

回転星コードの開発

1 次元恒星進化コード（Takahashi＋13，Umeda＋12，Yoshida＋11）十自転運動の考慮

- 遠心力の考慮（Endal \＆Sofia 76）
- 流体不安定由来の混合•角運動量輸送（Pinsonneault＋89）

不安定性には以下を考慮
－meridional circulation（温度の不均一）
－dynamical \＆secular shear inst．（シェア）

回転星の進化理論，不定性が非常に大きい！

- Solberg－Hoiland inst．（遠心力勾配）
- Goldreich－Schubert－Fricke inst．（筒状回転からのずれ）
- Spruit－Tayler dynamo（磁場のkink不安定）

なぜ回転星進化？

main motivations

＂古典的＂進化計算では扱えなかった問題
（1）NSの回転速度
（2）SN mechanismとproto－NSの自転運動
（3）Collapsar model for LGRB
など

necessity

多くの大質量星は高速回転星（ $\sim 0.35 \mathrm{~V}_{\mathrm{kep}}$ ）
回転は恒星進化に影響するはず
（1）遠心力による構造変化
（2）回転由来の不安定性による核種混合
（3）質量放出率の増加

現状

太陽組成の大質量星（10－
 ＞100Msun）について

鉄コアの崩壊まで
計算が可能

先行研究を再現できた ．．．あたらしいことしなきゃ。

恒星進化計算

－大質量初代星の進化計算（d燃焼から崩壊まで）初期質量‥12－160 Msun初期回転…Kepler回転の0．2倍

ポイントは

- 回転の影響を取り入れていること
- ＞100 Msunの進化を含むこと

$\stackrel{\rightharpoonup}{\mathbf{D}}$
0
-

恒星進化計算

三つの結果

- 窒素生成
- ＞100 MsunでのHe層組成変化
- 12－20MsunでのNa量増加

窒素生成（7）回転モデルは無回転モデルより多くの窒素を生成した

窒素生成（2）

無回転モデルは多量の窒素を作れない。 なぜなのか。

窒素はCNOサイクル（水素燃焼）で合成する （14N（p，r）${ }^{15} \mathrm{O}$ が起こりづらいので窒素がたまる）

\rightarrow 窒素の合成にはあらかじめ炭素が必要 しかし初代星の水素層には炭素がない。

12 Msun の進化
 回転なし

窒素生成（3）

無回転モデルは多量の窒素を作れない。

なぜなのか。

- 無回転モデルもはじめは窒素つくる（initial triple alpha）
- COコアに取り込まれた窒素は壊される
- 水素層には炭素がなく，あたらしい窒素もつくらない
- 放出される窒素は，ヘリウム層にのこったものだけ

回転モデルでは，回転由来の混合がある。

- 無回転モデルもはじめは窒素つくる（initial triple alpha）
- COコアに取り込まれた窒素は壊される
- 水素層には炭素がなく，あたらしい窒素もつくらない
- 放出される窒素は，ヘリウム層にのこったものだけ

窒素生成（3）

無回転モデルは多量の窒素を作れない。

なぜなのか。

- 無回転モデルもはじめは窒素つくる（initial triple alpha）
- COコアに取り込まれた窒素は壊される
- 水素層には炭素がなく，あたらしい窒素もつくらない
- 放出される窒素は，ヘリウム層にのこったものだけ

回転モデルでは，回転由来の混合がある。

- 無回転モデルもはじめは窒素つくる（initial triple alpha）
- COコアに取り込まれた窒素は壊される
- 水素層に炭素をとりこみ，新しく窒素をつくる
- 放出される窒素は，ヘリウム層にのこったものだけ

回転あり

Mr / M＿sol

窒素生成（4）

回転モデルでは，回転由来の混合がある。

- ヘリウム燃焼期に，生成した炭素•酸素が水素層まで運ばれる
- 水素層でのCNOサイクルがブーストして，多量の窒素を合成
- COコアに取り込まれた窒素は壊される
- ヘリウム層にのこる窒素が多くなる

回転モデルは無回転モデルより多くの窒素を生成した

回転の影響は星の外層で重要。

- CNOサイクルブーストのため。
- 強力なエネルギー生成を行う。
- ヘリウム層を巨大にする。
- 回転混合の効率は，Kelvin－Helmholtz timescale程度（？）

ニュートリノ冷却の重要なコアの後期進化には影響しない

星外層の構造•組成は，軽い元素の生成に影響する

- 軽い元素（～AI）は低温でも合成できる
- 星の外側はSN shockに影響されにくい
- CEMPの説明などに使われる

ヘリウム層進化（2）

対流層の進化図

ヘリウム層進化（3）

そこでヘリウム層での組成変化に注目。

－崩壊直前の組成分布があるので，爆発に影響されないと仮定して軽元素生成量を見積もる

－結果，COコア質量に依存した組成区分が可能
－2－10 Msun ： N rich
－12－20 Msun ：O rich
－30－Msun ：Mg rich

低質量の場合（12－20 Msun）

－COコア質量に依存した組成の区分
－2－10 Msun ：N rich

中間質量（30－60 Msun）

－COコア質量に依存した組成の区分
－12－20 Msun：O rich（Nがなくなる）

大質量（80－Msun）

－COコア質量に依存した組成の区分
－30－Msun ：Mg rich（ $\mathrm{O} \rightarrow \mathrm{Mg}$ ）

Na の増加（l）

さらに，回転混合によってHeコアの進化が異なる

- CNOサイクルブーストのため。
- 強力なエネルギー生成を行う。
- ヘリウム層を巨大にする。
- ヘリウムコアが次第に大きくなる
- （多分）CO比の変化を通じてNa，Mg量の違いに帰結

Na の増加（2）

［ $\mathrm{Na} / \mathrm{Mg}]>0$ は 15， 20 Msun の
回転低質量モデルだけ

結果のまとめ

窒素について
－無回転モデルは窒素をつくれない。炭素を含む水素層がないから。
－回転モデルは割合つくれている回転混合で炭素が混ざるから。
ヘリウム層について

- ヘリウム層の厚さは回転で増える
- ヘリウム層の組成は初期（COコア）質量による
－12－20 Msun：N rich
－30－60 Msun：O rich
－80－Msun：Mg rich
Naについて
- 回転モデルはNa rich，低質量だと $[\mathrm{Na} / \mathrm{Mg}]>0$
- CO比がちがうことに起因か

観測の比㫫

窒素について
－現実のEMPは窒素を持っている。回転による内部混合で窒素を作れる

ヘリウム層について
－ヘリウム層の組成は初期（COコア）質量による 80以上の外層はMg rich（O def．），観測に合わない
Naについて

- 回転による内部混合でNa量が増加
- 特に $[\mathrm{Na} / \mathrm{Mg}]>0$ の観測は低質量回転モデルでのみ説明可能

