

GRB 130606A 可視残光から得られた 宇宙再電離への示唆

戸谷 友則 (東大・天文)

平成26年1月22-24日 初代星・初代銀河研究会@鹿児島大学

T. Totani, K. Aoki, T. Hattori, G. Kosugi, Yuu Niino, T. Hashimoto, N. Kawai, K. Ohta, T. Sakamoto, T. Yamada submitted to PASJ, arXiv:1312.3934

Cosmic Reionization

- The Universe (hydrogen) became neutral at z~1100
 - + the cosmic recombination
 - + observed as CMB
- Hydrogen in IGM today is highly ionized
 - + the Gunn-Peterson Test
- The universe must have been reionized at around z~10
 - most likely by UV photons by first stars
 - when? how? important benchmark to understand galaxy formation

Djorgovski+

White+'03

- + Ly α absorption features of QSOs indicating that IGM neutral fraction rapidly increasing to $z \sim 6$
 - + close to reionization?
- + but saturated GP troughs only gives a lower limit of $n_{\rm HI}/n_{\rm H} > 10^{-3}$

Fan+'05

Observational Constraints on Reionization History

Next Step: Using Ly α Red Damping Wing

 measurement of f_{HI}=n_{HI}/n_H rather than lower limit is possible, if damping wing feature by neutral IGM is detected!

GRB 050904@z=6.3, TT+ '06

GRB as a Reionization Probe

+ Strengths:

- GRBs detectable at z>>6
- probes more normal (less biased)
 region in the universe than quasars
 - GRBs detectable even in small dwarf galaxies
 - No proximity effect
- simple power-law spectrum
 - damping wing analysis to precisely measure x_{HI} (=n_{HI}/n_H)

GRB 050904@z=6.3, TT+ '06

GRB as a Reionization Probe (2)

+ Weakness:

- Degeneracy between damped Ly α (DLA) of host galaxies and IGM damping wing
 - host DLA dominant for GRB 050904
 - + can be broken by metal absorption lines / Ly β features
 - we need low N_{HI} host galaxy to measure x_{HI} accurately

event rate not so high

- GRB 050904 has been only one useful constraint on reionization by GRBs since 2005!
- * x_{HI} < 0.17 (68%C.L) or 0.6 (95%C.L.) by fitting

GRB 080913 @ z~6.7

(Greiner+'09) 2-3 hrs, z'~24.5(AB), 2400 s exp. damping wing detected, but difficult to discriminate DLA or IGM

c.f. GRB 050904, z~6.3 3.4 days, z'=23.7(AB), 4 hr exp. GRB 090423 @ z~8.2

Tanvir+'09, ~20 hr, J~20.8 Only upper bound on N_{HI} (=no detection of damping wing)

The New Opportunity: GRB 130606A

Totani+'13, fig. created by Y. Niino

Castro-Tirado+'13

Spectrum of GRB 130606A

- ultra-high S/N spectra taken by Gemini, GTC, Magellan, Subaru, ...
- host HI at most log(N_{HI})<
 19.8, good for IGM
 study!
 - + c.f. 21.6 for GRB 050904

Chornock+'13

Damping Wing Analysis

- + Subaru/FOCAS spectrum in 10.4-13.2 hr after the burst
- + S/N=100 per pixel (0.74A)!
- + 8400-8900 A which is the most sensitive to IGM HI signature
- avoid strong absorption

Fitting Residuals

- power-law + host HI only
 - showing curved systematic residual
 - + amplitude ~ 0.6% of continuum flux
- 3 models of intervening HI can reduce the residual by about 3 sigma statistics
 - + IGM extending to z_u=z_{GRB}=5.913
 - + IGM extending to z_u ~ 5.8
 - corresponding to dark GP troughs to this sightline
 - ⋆ a DLA at z = 5.806
 - a metal absorption system found here
 - + log(N_{HI}/cm⁻²) ~ 20.7 required

Very subtle! systematics?

- various sources of systematics examined, but unlikely to explain the 0.6% curvature in the narrow range of 8400-8900 A
 - + spectrum reduction, calibration
 - extinction at host
 - intrinsic curvature in afterglow spectrum?

Systematics in Spectrum Reduction

- spectrum calibration by standard stars
 - + HST spectral standard library (CALSPEC)
 - + a white dwarf Feige 34 taken on the same day
 - the primary pure-hydrogen WD GD153 taken one day before
 - two reduced spectra agree within ~0.2%
- slit/aperture loss
 - + should not produce 0.6%-level "curvature" in 8400-8900 A
- removal of absorption lines
 - results insensitive to inclusion/removal of marginally detected absorption lines

Extinction at the Host Galaxy?

- using standard extinction curves (MW/ SMC), the reddening is linear in 8400-8900 A, does not produce "curvature"
- from N_{HI} and Z inferred for the host,
 A_V should be <~ 0.01

Curvature in the GRB Afterglow Spectrum?

а

 10^{4}

fast cooling t<to

v^{-p/2}

 $v^{-1/2}$

C

 $v^{1/3}$

В

- + spectral break が付近に来ているなら SED が時 間変動するはずだが、兆候なし
- + 8400-8900A で 0.6% の歪みは、波長が7%変化 しただけで power-law index が 1 変化するレベ ル (afterglow の break としては激しすぎる?)

diffuse IGM vs. DLA? (1) Ly β constraint

- the only metal absorption system close to the GRB host is at z=5.806
 - if the DLA is located at this redshift, $log(N_{HI}/cm^2) = 20.7$ required, much larger than in GBR host (19.7)
- chance probability of finding such a DLA is low (~3%) from DLA statistics at z < 5
- the case of z=5.806 & $\log(N_{\rm HI}/\rm cm^2)$ = 20.7 is excluded by the profile around Ly β feature

diffuse IGM vs. DLA? (2) metallicity

- the case of z=5.806 & log(N_{HI}/cm²) = 20.7 indicates [Si/H] < -3.5
 - + the lowest Z DLA known: -2.7
- even lower Z required if the DLA is not at z=5.806

Rafelski+'12

Discussion

- + Chornock et al. 2013 でも damping wing 解析をしていて、f_{HI} <~ 0.1 (2σ) という結果を主張
 - + 詳細は論文に書いていないが、多分 zu=zGRB=5.913の結果
 - + 我々はその場合、fHI ~ 0.1 なので、矛盾はない
 - + Chornock et al. は、afterglow spectral index $\beta = -2.0$ で、我々の $\beta = -1.0$ と全く合わない
 - + 自信もって言いますが、彼らが間違っています
 - 我々の結果は、NIR photometric data と一致
 - + IGM HI に影響を受けた波長域を power-law fit していそう
 - + fit した波長域、吸収線の除去、など詳しいことが全く書いてない
- + z=5.9 では電離しているのじゃないの!?
 - ◆ quasar vs. GRB で環境は異なりうる
 - * z~6 付近の quasar 解析から、z~6 ではまだ再電離は完全ではないという 主張もある(e.g. Mesinger 2010)

Conclusions

- GRB 130606A gives the second opportunity to probe reionization by GRBs, next to GRB 050904
- + simple power-law + host HI does not give a good fit, and intervening HI outside the host improves the fit by about 3σ
 - nhi/nh ~ 0.1 if zigm,u ~ zgrb ~ 5.913
 - + n_{HI}/n_H ~ 0.5 if $z_{IGM,u}$ ~ 5.8 (dark GP trough region, 5 proper Mpc away from GRB)
 - + the first evidence for intervening HI to GRB sightlines
- Known systematics or an intervening DLA seem unlikely
- + diffuse IGM HI remains as a plausible explanation
 - highly neutral IGM hidden in GP trough regions?
 - indicating that the reionization not yet complete at z~6
- demonstrated the great power of GRBs to study reionization!