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Abstract

Dark matter is one of the major components of the universe and plays a crucial role in the
history of structure formation. Although the existence of dark matter was first proposed
over ninety years ago, its nature remains unknown. Observational cosmology, which
combines theoretical studies of the universe with telescope-based observations, provides an
effective approach to investigating the nature of dark matter. The standard model of the
universe, which assumes that dark matter is cold and interacts with baryons and itself only
through gravity (so-called cold dark matter, or CDM), successfully explains a wide range
of observations. However, notable discrepancies exist between theoretical predictions and
observations on small scales, indicating that the CDM assumption might be revised. Since
the properties of dark matter have a direct impact on small-scale structures, studying these
scales is crucial for understanding its nature.

One of the most effective methods for studying small-scale structures is gravitational
lensing, a phenomenon in which light from background sources, such as galaxies and stars,
is bent by foreground lens objects, such as galaxies and galaxy clusters. In particular, we
focus on strong gravitational lensing, where multiple images are produced, accompanied
by significant magnification. Strong gravitational lensing occurs near a characteristic line
in the lens plane called a critical curve, where the magnification mathematically diverges
to infinity. The corresponding line in the source plane is referred to as the caustic. When
a background source lies near the caustics, highly magnified images are observed near the
critical curves. Because mass distribution within the lens objects influences these critical
curves and caustics, it is essential to understand how small-scale mass distributions affect
their shape and configuration.

In this thesis, we first investigate the effect of microlenses near the macro-critical curve
of a galaxy cluster, which generate micro-critical curves, on the observed number of highly
magnified individual stars. We derive an analytic model for the high-magnification tail
of the probability distribution function (PDF). Our model predicts that the probability
is proportional to the independent number of micro-critical curves, showing excellent
agreement with simulations that solve the lens equation. Using this analytic model, we
constrain the parameter space of microlenses based on the observed number of Icarus-like
events. Icarus is an individual star observed near the macro-critical curve of the MACS
J1149 cluster, with a magnification factor estimated to be on the order of thousands.
Finally, we consider primordial black holes (PBHs), one of the alternative candidates for
CDM, as microlenses and constrain their mass and mass fraction, showing that a scenario
with fPBH ≳ 0.2 with a mass around 1 M⊙ cannot account for the observed number of
Icarus-like events and is therefore excluded.

Second, we investigate how substructures, such as subhalos, perturb the shape of
the macro-critical curve of a galaxy cluster. Perturbations to the macro-critical curve
break the symmetry of the observed images, providing a potential method to infer the
properties of substructures. A recent example of such perturbations is the observation of
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Mothra, where an astrometric shift in the macro-critical curve might be indicated. We
obtain the general analytic formula that connects the fluctuation of macro-critical curves
with the fluctuation of the surface density caused by substructures. As an application of
the analytic model, we first assess whether CDM subhalos can account for the observed
location of Mothra. We find that this location can be explained if the maximum subhalo
mass is approximately 109 M⊙/h. Next, we consider the fuzzy dark matter (FDM) model,
a viable alternative candidate for CDM, which predicts the existence of granular structures
within halos and subhalos. Our analysis shows that a particle mass of m ≲ 10−24 eV/c2

is required to explain the observed location of Mothra.
Finally, we numerically and analytically investigate the galaxy-galaxy strong lensing

(GGSL) cross-section in galaxy clusters with the FDM model. The GGSL cross-section is
defined as the total area covered by secondary caustics, which are generated by substruc-
tures. Observationally, the cross-section is reported to be an order of magnitude larger
than what is predicted by the CDM model. Our findings show that FDM subhalos can
produce larger cross-sections than CDM subhalos, primarily due to the soliton core, a
distinctive structure at the center of FDM subhalos. The cross-section reaches its maxi-
mum when the soliton core radius aligns with the size of the critical curve. However, the
peak ratio of cross-sections between FDM and CDM subhalos is approximately two when
the baryonic distribution is included, suggesting that the FDM model, irrespective of the
particle mass, may struggle to account for the observed GGSL cross-section.

With recent developments in observational capabilities, the observed number of strong
gravitational lensing events is expected to increase significantly. Therefore, our studies
presented in this thesis are particularly important, as they provide a crucial foundation
for constraining small-scale mass distributions and uncovering the nature of dark matter
through future observations.
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Chapter 1

Introduction

The concept of dark matter has played a crucial role in shaping our understanding of the
structure of the universe and its evolution. In the early twentieth century, the notion of
unseen mass arose from discrepancies between observed and predicted motions of celestial
objects. In 1933, Fritz Zwicky coined the term ”dark matter” while studying the Coma
Cluster, where the visible galaxies accounted for only a fraction of the gravitational forces
inferred from their velocities [1, 2]. Decades later, in 1970, Vera Rubin and Kent Ford
provided compelling evidence for dark matter by measuring the rotational velocities of
the stars in the Andromeda galaxy, showing that stars at the outer edges of spiral galaxies
move much faster than expected based on luminous matter alone [3]. In the same year,
Ken Freeman also indicated the existence of the missing matter by measuring the rotation
curve of spiral galaxies such as NGC300 and M33 [4]. These early findings laid the
foundation for the modern understanding of dark matter as a fundamental yet enigmatic
component of the universe, constituting approximately 27% of the total energy density
in the universe [5]. Despite significant observational and theoretical advances, the true
nature of dark matter remains one of the most profound open questions in physics.

The mystery of dark matter has driven a broad spectrum of research, developing
five major experimental and theoretical approaches: particle physics, accelerator-based
experiments, direct detection, indirect detection, and observational cosmology. Particle
physics provides the theoretical foundation for dark matter, proposing candidates such as
weakly interacting massive particles (WIMPs), axions, and sterile neutrinos. These mod-
els, rooted in extensions to the Standard Model such as supersymmetry, predict specific
properties such as mass, interaction strength, and decay channels, guiding experimental
searches [6, 7]. Accelerator experiments, such as those conducted at the Large Hadron
Collider (LHC), test the predictions of various theories of particle physics through high-
energy collisions. Since dark matter is expected to have negligible interaction with Stan-
dard Model particles, it would pass through detectors without being directly observed.
By searching for missing energy signatures, experiments offer a pathway to uncovering
the nature of dark matter [8, 9]. Direct detection experiments are designed to observe rare
interactions between dark matter particles and atomic nuclei in ultra-sensitive detectors.
These detectors, typically located deep underground to minimize background noise, rely
on technologies like liquid xenon and cryogenic scintillators to detect minute energy de-
posits or ionization signals. Leading experiments such as XENONnT, LUX-ZEPLIN, and
PANDA-X have set increasingly stringent limits on dark matter interaction cross-sections
[10, 11, 12]. In contrast, indirect detection focuses on observing secondary particles, such
as gamma rays, neutrinos, or positrons, that may result from dark matter annihilation

1
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SM

DMDM

SM

Direct detection

Indirect detection   Collider experiment

Figure 1.1: Schematic illustration of dark matter experiments, including collider experi-
ments, direct detections, and indirect detections.

or decay in astrophysical environments. Observatories like the Fermi Gamma-ray Space
Telescope and neutrino detectors such as IceCube and Super-Kamiokande have searched
for these signatures in regions of high dark matter density, including the Galactic Center
and dwarf spheroidal galaxies [13, 14, 15]. Figure 1.1 shows the schematic diagram of
these experiments searching for dark matter. Each method addresses a unique aspect of
dark matter, contributing to a comprehensive framework for understanding one of the
universe’s most profound mysteries.

Observational cosmology provides a complementary avenue for studying dark matter
by examining its effects on the structures of the universe. The standard model of the
universe, known as the Λ Cold Dark Matter (ΛCDM) model, posits that dark matter is
cold, i.e., non-relativistic, and interacts with both baryons and itself primarily through
gravity. The WIMP, which is favored for existence in particle theory models, is consid-
ered to be a concrete dark matter model of the CDM. The standard model successfully
explains a wide range of observational data. For instance, the anisotropies in the cosmic
microwave background (CMB), as measured by observations such as Wilkinson Microwave
Anisotropy Probe (WMAP) and Planck, align remarkably well with ΛCDM predictions
[16, 5]. Similarly, the large-scale structure of the universe, as mapped by galaxy surveys
such as Sloan Digital Sky Survey (SDSS) and Dark Energy Survey (DES), shows a hier-
archical clustering pattern that matches simulations incorporating CDM [17, 18, 19, 20].
While these observational successes provide strong support for the ΛCDM model, there
are some anomalies on a small scale, known as small-scale problems [21]. Some of the
examples are the core-cusp problem [22, 23], the missing satellites problem [24], the diver-
sity problem of rotation curves [25], and the too-big-to-fail problem [26]. There are two
main approaches to alleviating small-scale discrepancies. One is to carefully consider the
baryon physics such as star formation and supernova explosions within the framework of
the standard model [27, 28, 29]. The other approach is to consider alternative dark mat-
ter models, such as warm dark matter (WDM) [30], self-interacting dark matter (SIDM)
[31], primordial black holes (PBHs) [32, 33], and fuzzy dark matter (FDM) [34]. To be
precise, PBHs might not be a direct solution to the small-scale problems, however, they
are widely studied because they do not require new particles such as WIMPs to explain
the existence of dark matter. Both strategies have demonstrated the potential to address
these discrepancies while maintaining the success of the standard model at larger scales.
As such, observational cosmology serves as a critical avenue for probing the fundamental
nature of dark matter. To deepen our understanding, it is essential to explore the con-
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nection between the mass distribution on small scales, as revealed through observation
such as gravitational lensing, and the intrinsic properties of dark matter.

The history of gravitational lensing begins with its theoretical prediction by Einstein
in 1915 as a consequence of General Relativity. Although the concept was also outlined
by Orest Chwolson in 1924, Einstein formalized it in 1936 when he calculated the angular
radius of an Einstein ring [35]. Fritz Zwicky further developed the idea in 1937, proposing
that galaxy clusters could act as gravitational lenses, offering a way to measure masses
independently of their luminosity and providing a tool to study dark matter [36]. Obser-
vationally, gravitational lensing was first confirmed in 1979 with the discovery of multiple
imaging in the quasar QSO 0957+561 [37]. This was followed by the identification of giant
luminous arcs in galaxy clusters [38, 39] and the first discovery of the Einstein ring [40].
Microlensing events were also detected [41, 42], revealing the possibility of constraining
the abundance of the massive compact objects within the lens galaxies. The first detec-
tion of weak lensing was reported in 1990 [43], revealing systematic alignments in faint
background galaxy images. These milestones solidified gravitational lensing as a powerful
method for investigating both visible and dark matter in the universe.

In this thesis, we specifically focus on strong gravitational lensing as a tool for investi-
gating the nature of dark matter. Strong gravitational lensing occurs near critical curves,
which are characteristic lines on the lens plane where the magnification of background
sources becomes extremely high. These critical curves are highly sensitive to the underly-
ing mass distribution, enabling the estimation of small-scale mass structures by analyzing
highly magnified images. The primary goal of this study is to analytically explore the
relationship between the nature of dark matter, which affects the small-scale mass dis-
tribution, and the strong gravitational lensing signals. By utilizing the analytic models
developed in this thesis, we aim to compare these theoretical predictions with actual
observational data, thereby placing new constraints on the properties of dark matter.

The present thesis is organized as follows. We first review the standard model of the
universe, the small-scale problems, and the possible solutions in Sec. 2. Then we review
the FDM model in detail in Sec. 3. Here, we include the content of our recent paper on
the core-halo mass relation in Sec. 3.4. We then review the basics of strong gravitational
lensing in Sec. 4. In the following sections, we show our three different studies. In Sec. 5,
we study the effect of microlenses on the number of ultrahigh magnification events and
constrain the parameter space of PBHs from the observation of Icarus [44]. In Sec. 6,
we study the fluctuations of the macro-critical curves induced by the substructures and
show the preferred mass of FDM by comparing the observation of Mothra [45]. In Sec. 7,
we focus on the galaxy-galaxy strong lensing (GGSL) cross-section with the FDM model
and show the implication for the FDM mass. Finally in Sec. 8, we show the conclusion of
this thesis. Throughout this thesis, unless otherwise stated, the cosmological parameters
are set to the best-fit values from the Planck satellite observations [5]: Ωm0 = 0.3111,
Ωb0 = 0.0490, and H0 = 67.66 km/s/Mpc. Additionally, the size of the halo is defined as
the radius at which the virial equilibrium condition holds, referred to as the virial radius,
and the halo mass is defined as the total mass enclosed within the virial radius, i.e., the
virial mass.
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Chapter 2

Standard model of the universe and
small-scale problems

In the early twentieth century, general relativity was formalized by Albert Einstein. The
Einstein equation, which is the fundamental equation in general relativity, relates the
geometry of spacetime to the underlying matter and energy distribution. Tests such as
the precise tracking of the perihelion shift of Mercury, the deflection of light by the Sun
observed during solar eclipses, and the detection of gravitational waves have confirmed
predictions of general relativity. With these confirmations, general relativity has become
one of the fundamental theories in modern physics, opening new windows to studying the
structure and dynamics of the universe, which are known as astrophysics and cosmology.

Observational techniques in astronomy have advanced remarkably, and we have ob-
tained a wealth of data from which we have gained a deeper understanding of the uni-
verse. Early milestones include Edwin Hubble’s discovery of the expanding universe
through galaxy redshift observations and the detection of the cosmic microwave back-
ground (CMB) by Penzias and Wilson, which provided strong evidence for the Big Bang
theory. Subsequent missions such as the Cosmic Background Explorer (COBE), which
provided detailed measurements of the anisotropy of the CMB, and the Hubble Space Tele-
scope (HST), which provided a wide range of astronomical phenomena, have deepened
our understanding of the universe. The Wilkinson Microwave Anisotropy Probe (WMAP)
mission delivered precise data on the CMB across the entire sky, helping to determine
cosmological parameters, and the Sloan Digital Sky Survey (SDSS) mapped millions of
galaxies, unveiling the large-scale structure of the universe. Planck has improved the
estimation of the cosmological parameters by increasing the sensitivity of the CMB, and
the Dark Energy Survey (DES) and Hyper Suprime-Cam (HSC) have explored the nature
of dark energy and galaxy distribution in more detail. More recently, the James Webb
Space Telescope (JWST) has been revealing the early evolution of the universe through
its sensitivity to the infrared region, and the Euclid satellite, mainly aiming at exploring
the nature of dark energy and dark matter, launched in 2023.

These theoretical frameworks and observations have led to the development of the
standard model of the universe, which can explain a wide range of observational data of
the universe. Although the large-scale structure is well described by this standard model,
there are several discrepancies between the theoretical predictions and the observation of
the small-scale structures, indicating that the standard model might need to be revised.

In this chapter, we first review the standard model of the universe and its success in
explaining the large-scale structures in Sec. 2.1. We then review the small-scale discrep-

5



6CHAPTER 2. STANDARD MODEL OF THE UNIVERSE AND SMALL-SCALE PROBLEMS

ancies in Sec. 2.2. The possible approaches to alleviate the small-scale discrepancies are
shown in Sec. 2.3.

2.1 Standard model of the universe
Our understanding of the universe has progressed from the latter half of the twentieth
century thanks to the wide range of observations. Typical examples include the existence
of unknown energy densities called dark matter and dark energy, the structure formation
from the density fluctuations in a uniformly isotropic universe, the existence of inflation
as a source of fluctuations, and Big Bang nucleosynthesis. In the standard model of the
universe, so-called the Λ Cold Dark Matter (CDM) model, dark matter is assumed to
interact primarily through gravity and be cold, which means it moves sufficiently slowly
in the early universe, and dark energy is assumed to be the cosmological term in the
Einstein equation. Our review of the standard model here mainly focuses on the CDM
model as shown in Sec. 2.1.1. Then we show the theoretical prediction on the large-scale
structures in Sec. 2.1.2 and small-scale structures in Sec. 2.1.3. In Sec. 2.1.4, we briefly
review the baryon distribution within dark matter halos.

2.1.1 Cold dark matter
Observations of the CMB by Planck satellite indicate that dark matter accounts for about
27% of the total energy density in the universe, about five times as much as baryons [5].
Due to its large abundance, dark matter plays an important role in the structure for-
mation of the universe. Although the nature of dark matter remains unknown, some
of its properties have been uncovered. For instance, it exhibits extremely weak non-
gravitational interactions and remains stable over the age of the universe. Therefore,
the standard model of the universe phenomenologically assumes that dark matter has
negligible non-gravitational interactions and its velocity dispersion is sufficiently small,
the so-called CDM model. In the structure formation with the standard CDM model,
there is no (or very small) cutoff scale because there is no collisionless damping of density
fluctuations, and very low mass structures can be produced. If the particles constitut-
ing CDM are thermal relics, i.e., particles that were in thermal equilibrium in the early
universe, but as the universe expanded their interactions became negligible and they sub-
sequently behaved as free particles, then heavy particles are likely candidates. One viable
example is the weakly interacting massive particle (WIMP) with a mass of approximately
m ≃ 1 GeV/c2 − 1 TeV/c2. WIMP of this mass draws attention because it could po-
tentially resolve the hierarchy problem in particle physics, which concerns the large gap
between the energy scales of electroweak theory and the Planck scale [6], as well as it can
explain the current amount of dark matter present in the universe. This coincidence is
known as the ”WIMP miracle”. To closer look at this miracle, let us start with the current
dark matter density assuming CDM is a thermal relic particle, which can be expressed as
[51, 52]

ΩDM ≃ 0.1× 3× 10−26 cm3/s
⟨σannv⟩

. (2.1)

Since the annihilation cross-section of the WIMP can be approximated as ⟨σannv⟩ ≃
cG2

Fm
2
WIMP/h̄

4 when mWIMP ≪ mW ∼ 100 GeV and ⟨σannv⟩ ≃ cG2
Fm

4
W/(h̄4m2

WIMP)
when mWIMP ≫ mW, where GF is the Fermi coupling constant and mWIMP and mW are
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the WIMP mass and weak boson mass, respectively, the dark matter density calculated by
Eq. (2.1) is consistent with the current universe when the WIMP mass is about 1 GeV/c2

to 1 TeV/c2. This energy scale corresponds to the region where the new physics needed
to explain Higgs condensation is expected, highlighting the WIMP as a viable candidate
for addressing the hierarchy problem in particle physics. Thus, if CDM is composed
of thermal relic particles, WIMP is regarded as a candidate to solve problems both in
cosmology and particle physics.

Non-thermal relic particles can also constitute CDM. In this case, the CDM prop-
erties can be satisfied if particles are produced with non-relativistic velocity dispersion
regardless of the particle mass. Specific examples include axions and axion-like parti-
cles (ALPs). Axions are particles necessary to solve the strong CP problem in quantum
chromodynamics, while ALPs are predicted by string theory. ALPs have recently gained
attention as a specific particle model for ultralight dark matter, often referred to as fuzzy
dark matter (FDM), which we discuss in Chap. 3. In the context of the standard model of
the universe, the term CDM typically refers to WIMPs, which are thermal relic particles.
We follow this convention and treat other candidates as beyond CDM.

2.1.2 Large-scale structure
As mentioned in Sec. 2.1.1, dark matter has played a crucial role in the structure formation
of the universe. This section discusses how the standard model has successfully explained
observational results on large scales, k ≲ 1 Mpc−1 with k being the wavenumber of the
matter fluctuation. Discussions often make use of statistical properties such as the two-
point correlation function and the power spectrum. Considering the density fluctuation
δ(r) = (ρ(r)− ρ̄)/ρ̄ where ρ̄ is the mean density, the two-point correlation function of the
density fluctuation is defined as

ξ(r12) = ⟨δ(r1)δ(r2)⟩. (2.2)

Here, the right-hand side calculates the ensemble average of the product of density fluc-
tuations at two spatial points r1 and r2, and r12 is the distance between the two points,
r12 = |r1 − r2|. While the right-hand side involves taking an ensemble average over a
large number of statistically equivalent universes, this is calculated by fixing the distance
r12 and averaging over all locations in space using observational data, which is equivalent
to assuming ergodicity. The power spectrum is defined using the Fourier transform of the
density fluctuation δ̃(k) as

⟨δ̃(k)δ̃(k′)⟩ = (2π)3δ
(3)
D (k + k′)P (k), (2.3)

where δ(3)D (k) is the Dirac delta function. The power spectrum corresponds to the Fourier
transform of the two-point correlation function.

The initial density fluctuations generated by inflation follows Pin(k) ∝ kn with n ≃ 1,
indicating an almost scale-invariant spectrum [5]. The fluctuations within the Hubble
horizon grow or are suppressed due to various physical effects. Throughout the history of
the universe, the Hubble horizon is very small at the time of inflation and then gradually
increases through the radiation-dominant and matter-dominant eras [52]. Therefore, the
fluctuations with shorter wavelengths re-enter the Hubble horizon at earlier times and
undergo scale-dependent modifications. In the linear theory, where the density fluctuation
satisfies δ ≪ 1, the evolution of fluctuations can be described by independent equations for
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each wavenumber, and therefore, the amplitude of the fluctuation mode with wavenumber
k is proportional to the amplitude of the initial fluctuation of the same mode. The scale-
dependent modification is incorporated in the transition function T (k). For scales that
re-enter the Hubble horizon during the radiation-dominant era, the growth of fluctuations
is suppressed due to the pressure of radiation, and the transfer function, disregarding the
baryon abundance, can be approximated as [52]

T (k) = 12

(
k

keq

)−2

ln
(

k

8keq

)
, (2.4)

where keq corresponds to the wavenumber associated with the size of the Hubble horizon
at matter-radiation equality, keq ≃ 0.01 Mpc−1 [5]. Since shorter wavelengths re-enter
the Hubble horizon earlier, they experience a longer period of suppression, resulting in a
smaller transfer function. The logarithmic growing mode indicates that the suppression
is alleviated in the radiation-dominant era. On the other hand, fluctuations larger than
the Hubble horizon at the age of matter-radiation equality re-enter the horizon during
the matter-dominant era and avoid the suppression by the radiation, yielding T (k) ≃ 1.
Therefore, the asymptotic behavior of the power spectrum with no baryon limit is given
by

P (k) ∝ T 2(k)Pin(k) ∝

{
k k ≲ keq

k−3 ln{k/(8keq)} k ≳ keq
(2.5)

From this discussion, the key feature of the power spectrum is the turnover at matter-
radiation equality. In the more realistic case where a small amount of baryon is present,
the shape of the transfer function and the power spectrum is modified due to the silk
damping and the baryon acoustic oscillation. Note that the discussion above is limited to
structure formation in the linear regime, corresponding to scales larger than approximately
1 Mpc in the current universe.

Figure 2.1 shows a comparison of the linear matter power spectrum between the the-
oretical prediction by the standard ΛCDM model and the wide range of observations
[53]. Here, they use the best-fitting cosmological parameters obtained from the CMB
observations by the Planck satellite [5]. While the asymptotic behavior is consistent with
Eq. (2.5), the oscillation and damping can be seen on a small scale originating from the
baryonic effects. As shown in the figure, the standard model of the universe provides
an excellent explanation for the observational results across various scales in the linear
regime, with k ≲ 1 Mpc−1.

2.1.3 Dark matter halo
In Sec. 2.1.2, we have focused on structure formation in the linear regime. While the evolu-
tion equation for matter fluctuations can be expressed independently for each wavenumber
in the linear regime and therefore it is relatively easy to make theoretical predictions, it is
not the case in the non-linear regime, resulting in the difficulty of analytical discussions.
Here, the non-linear regime refers to the region where the density fluctuation is larger than
unity, δ ≳ 1. Examples of non-linear structures are dark matter halos and galaxies, where
matter is highly concentrated compared to the average density of the universe. To study
the non-linear structure formation, we need to rely on cosmological simulations (e.g., [55]).
Here, we review the structure of CDM halos as revealed by ΛCDM simulations.
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Figure 2.1: The linear matter power spectrum at redshift z = 0 is shown. The black solid
line represents the theoretical prediction by the standard ΛCDM model with cosmological
parameters obtained by the Planck satellite [5]. The observed spectra are obtained by
CMB with the Planck satellite on the largest scales [54], galaxy clustering with SDSS on
intermediate scales [20], cosmic shear with DES [19], and Lyman-α clustering with SDSS
[18] on the smallest scales. This figure is taken from [53].

The density profile of the CDM halos is known to be described by the Navarro-Frenk-
White (NFW) profile [56], which can be expressed as

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2
, (2.6)

where rs and ρs are the scale radius and density, respectively. The density profile can be
expressed by a double power law where the density profile is cusp-like ρ ∝ r−1 near the
center of the halo, r ≲ rs, and outside the density profile follows ρ ∝ r−3. The NFW profile
can also be described using the total halo mass Mh and the concentration parameter cvir,
instead of the two parameters rs and ρs. Here, the concentration parameter is defined
as cvir ≡ rvir/rs, with rvir representing the virial radius of the halo. It is important to
note that the definition of the concentration parameter varies depending on how the halo
radius is defined. As mentioned in Chap. 1, we adopt the virial radius as the halo radius
definition throughout the thesis. The enclosed mass of the NFW profile is expressed as

MNFW(< r) = 4πρsr
3
s

{
ln
(
1 +

r

rs

)
− r/rs

1 + r/rs

}
. (2.7)
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Using this expression, the total halo mass can be written as

Mh =MNFW(< rvir) = 4πρsr
3
sf(cvir), (2.8)

where f(cvir) is defined as f(cvir) ≡ ln(1 + cvir) − cvir/(1 + cvir). The virial halo mass is
further related to the mean matter density ρ̄ at a given redshift z as

Mh =
4

3
πr3virζ(z)ρ̄(z), (2.9)

where ζ(z) is given by

ζ(z) =
1

Ωm(z)
{18π2 + 82(Ωm(z)− 1)− 39(Ωm(z)− 1)2}, (2.10)

with Ωm(z) representing the matter density parameter at redshift z [57].
The relation between concentration and halo mass, so-called the cvir-Mh relation, is

actively studied (e.g., [58, 55]). The mean concentration of halos with mass Mh at redshift
z is approximated by [58]

cB
vir(Mh, z;CDM) = A

1 + zcoll(Mh;PCDM)

1 + z
, (2.11)

where PCDM is the linear matter power spectrum at redshift z = 0, which is shown in
Fig. 2.1, and the constant A is set to 3.13 [59]. The collapse redshift zcoll is determined
through

D(zcoll) σ(fcollMh;PCDM) = δc, (2.12)
where D(z) is the linear growth rate and σ(M) represents the linear root-mean-square
density fluctuation on the comoving scale encompassing a mass M at redshift z = 0. The
constant fcoll is set to 0.01, and the critical density fluctuation for collapse is given by
δc = 1.59 + 0.0314 lnσ8(z) with σ8 being the amplitude of the linear power spectrum on
the scale of 8 Mpc/h. The cvir-Mh relation derived from a cosmological CDM simulation
with the largest box size of 140 Mpc/h [55] is consistent with the analytic model described
above. The dependence of the concentration parameter on the halo mass at redshift z = 0
in the CDM model is approximately

cvir ∝M−0.06
h Mh ≲ 1011 M⊙/h (2.13)

cvir ∝M−0.12
h Mh ≳ 1011 M⊙/h. (2.14)

The concentration shows a scatter around its mean value, with a 1σ scatter of approxi-
mately 0.16 dex [60]. This scatter is nearly independent of both halo mass and redshift.

Subhalos are smaller gravitationally bound structures within a larger dark matter
halo. They are thought to be the remnants of smaller halos that have merged into a
larger parent halo during the hierarchical structure formation of the universe. A key
property of these subhalos is their mass distribution, commonly referred to as the subhalo
mass function, describing the abundance of subhalos as a function of their mass within
a parent halo. In the context of the CDM model, the subhalo mass function has been
the subject of extensive investigation, both through numerical simulations and analytical
approaches (e.g., [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]). The
cumulative number of subhalos is approximated by a power-law relation, derived from
numerical simulations, as [64, 67]

Nsh(> Msh) ∝
(
Msh

Mhh

)−0.9

, (2.15)
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where Mhh and Msh represent the host halo mass and the subhalo mass, respectively. This
power-law behavior is consistent with theoretical predictions [65, 72]. However, deviations
from a simple power law have been indicated in more detailed analyses. From simulations,
it has been suggested that the subhalo mass function can be described with an exponential
cutoff at the high-mass end as [68, 71, 76]

dNsh

d lnMsh
= 0.30

(
Msh

Mhh

)−0.7

exp
[
−9.9

(
Msh

Mhh

)2.5
]
. (2.16)

While the formula above is derived by fitting numerical results, a recent semi-analytic
model provides a physical understanding of the CDM subhalo mass function [75]. In this
model, the evolved mass function corresponding to the observable subhalo distribution
in the present universe is calculated by combining the unevolved mass function with the
effects of tidal evolution modeled by [72]. Here, the unevolved mass function assumes that
the host halo grows solely through the accretion of smaller halos, with its mass determined
by integrating the contributions from all accreted halos. This semi-analytic model based
on the assumptions above successfully reproduces the subhalo mass function observed in
simulations, providing a consistent explanation for the numerical results. Note that we
can use the open source code 1 provided by [75] to calculate the subhalo mass function.

The spatial distribution of subhalos is thought to follow the density distribution of the
host halo [69]. Here, let us consider the projection along the line of sight and obtain the
projected subhalo mass function, which is important in the observation of gravitational
lensing. The surface mass density profile is defined as

Σ(x) =

∫
dz ρ(r), (2.17)

where x is the two-dimensional coordinates on the projected density field. In the case of
the spherical NFW profile, the analytic expression has been obtained [77],

ΣNFW(x) =
2ρsr

3
s

x2 − r2s
g

(
x

rs

)
, (2.18)

with the function g(ξ) is defined by

g(x) =


1− 2√

ξ2−1
arctan

√
ξ−1
ξ+1

(ξ > 1),

1− 2√
1−ξ2

arctanh
√

1−ξ
1+ξ

(ξ < 1),

0 (ξ = 1).

(2.19)

The surface number density of subhalos is proportional to the surface density profile of
the host halo,

dNsh

dS
=
NshΣ(dsh;Mhh)

Mhh
, (2.20)

where dsh is the distance to the host halo center and dS = 2πdshddsh assuming the spherical
symmetry. The projected subhalo mass function can be expressed as

d2Nsh

dMshdS
=
dNsh

dMsh

Σ(dsh;Mhh)

Mhh
. (2.21)

Note that dNsh/dMsh is the subhalo mass function shown in the previous paragraph.
1https://github.com/shinichiroando/sashimi-c

https://github.com/shinichiroando/sashimi-c
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2.1.4 Baryon distribution
So far, we have focused on the distribution of CDM. Since structure formation is primarily
driven by dark matter, given that the baryon abundance is five times smaller, the baryon
distribution generally follows the dark matter density. Here, we provide a brief overview
of the baryon distribution within the host halo that forms a galaxy.

The baryon profile is known to follow the Hernquist profile [78], which is expressed as

ρHern(r) =
ρg

(r/rg)(1 + r/rg)3
, (2.22)

where rg and ρg denote the characteristic radius and density, respectively. The character-
istic density ρg can be written in terms of the characteristic radius and the total baryon
mass Ms as

ρg =
Ms

2πr3g
. (2.23)

The characteristic radius rg is related to the effective radius of the Hernquist profile re as
rg = 0.551re. Therefore, the Hernquist profile is fully determined by the effective radius
and the total baryon mass. Based on observations of 50,000 early-type galaxies in the
SDSS, there is a relation between the effective radius and the total baryon mass as [79]

log10

(
re

kpc

)
= 7.55− 1.84 log10

(
Ms

M⊙

)
+ 0.11

{
log10

(
Ms

M⊙

)}2

. (2.24)

Additionally, the total baryon mass is linked to the host halo mass through the stellar-
to-halo mass ratio [80]. The ratio depends on the halo mass but is typically on the order
of 0.01. From the relations above, the baryon distribution within the host halo can be
estimated for a given halo mass.

2.2 Small-scale problems
In Sec. 2.1, we briefly review the structure formation with the standard ΛCDM model
and show that the linear theory is in good agreement with observational data. In this
section, we focus on observational results in the nonlinear regime at scales k ≳ 1 Mpc−1

and discuss the discrepancies identified in comparison to ΛCDM simulation outcomes.
These discrepancies are collectively called small-scale problems, and the following four
problems in particular have been identified [21].

2.2.1 Core-cusp problem
The core-cusp problem refers to the discrepancy between the central density profiles of
halos predicted by ΛCDM simulations and those observed in dwarf galaxies and low-
surface-brightness galaxies [22, 23, 81, 82, 83]. As shown in Sec. 2.1.3, CDM halos follow
an NFW profile, where the density distribution near the center exhibits a cusp-like be-
havior, ρ ∝ r−1. In contrast, observations of the rotation curves of dwarf and low-surface-
brightness galaxies indicate that their central density profiles are core-like, ρ = const. [84].
Since these systems are dominated by dark matter and have a small amount of baryon con-
tent, it is difficult to consider solutions to small-scale problems involving baryon physics
as explained in Sec. 2.3.1.
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2.2.2 Missing satellite problem
The missing satellite problem refers to the discrepancy between the number of subhaloes
in a Milky Way-sized CDM halo and the number of dwarf galaxies observed around the
Milky Way [24]. This comparison is based on the idea that simulated CDM subhalos with
masses M ≳ 107 M⊙ are expected to host (dwarf) galaxies, making their numbers roughly
comparable. However, the difference in their number is an order of magnitude, especially
for structures with small masses. This discrepancy could be attributed to the power-law
index of the subhalo mass function. As shown in Sec. 2.1.3, the ΛCDM simulations predict
a value of about −1.9, while the observed galactic stellar mass function predicts about
−1.47 [85]. This leads to a large discrepancy in the number of low-mass objects.

However, recent observational advances and a better understanding of the galaxy-halo
connection through baryon physics suggest that the missing satellite problem may be
solved. Indeed, an increasing number of dwarf galaxies have been discovered within the
Milky Way [86]. Additionally, it is expected that more dwarf galaxies will be detected
through surveys such as the DES and the Large Synoptic Survey Telescope (LSST) [87].
It is shown that by considering the galaxy-halo mass scaling relations [88, 89, 90], the
number of satellites predicted by the ΛCDM model agrees with the number of observed
satellites after correcting for the detection efficiency of the SDSS [91]. These recent studies
suggest that the missing satellite problem could already be resolved.

2.2.3 Diversity problem
The diversity problem refers to the discrepancy in the radial dependence of the inner
rotation curves of galaxies. While in ΛCDM simulations, galaxies with the same maximum
rotation velocity exhibit almost identical inner rotation curves, there is a wide variety
of inner rotation curves in observations of dwarf galaxies [25]. This problem can be
interpreted as a modern version of the core-cusp problem, as differences in the density
profile near the center are reflected in the shape of rotation curves. However, some of the
observed rotation curves show larger velocities than predicted by the ΛCDM model. The
diversity problem might suggest that the dark matter density profile is influenced by the
distribution of baryons, while the effects on the CDM distribution remain minimal due to
the absence of non-gravitational interactions in the CDM framework. Therefore, it has
been suggested that the diversity of the rotation curves can be achieved by considering
the alternative dark matter model such as self-interacting dark matter (SIDM) as shown
in Sec. 2.3.2.

2.2.4 Too-big-to-fail problem
The too-big-to-fail problem refers to the issue where the central densities of massive CDM
subhalos within Milky Way-sized halos are too dense, leading to the formation of galaxies
that are brighter than any of the observed dwarf galaxies [26]. The term “too big to
fail”comes from the notion that massive subhalos require either strong tidal collapse or
reduction in star formation efficiency to host the brightest dwarf galaxies observed, both
of which are constrained by current observations, and that CDM subhalos should host
larger galaxies. It is important to note that the core-cusp problem indicates discrepancies
in the central density of systems with few baryons, whereas the too-big-to-fail problem
focuses on massive subhalos where a sufficient amount of baryons exist. If the core-cusp
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problem is resolved, it would reduce the central density, which in turn could solve the
too-big-to-fail problem as well.

2.3 Possible solutions
In Sec. 2.2, we show the discrepancies between the theoretical predictions of the ΛCDM
model and small-scale observations. It might indicate that the standard model is not
the right model to explain the universe. To develop a theory that better explains the
universe, the standard model must be modified to address inconsistencies at smaller scales
while maintaining the success of the large-scale structure. Two main approaches have
been researched as potential solutions to the small-scale problems. The first approach
is to carefully include baryon physics such as star formation and supernova explosions,
which are not incorporated in the original simulations solving the evolution of CDM
distribution. The other approach involves considering alternative dark matter models,
such as warm dark matter (WDM), SIDM, and FDM. In this section, we review both
approaches. Note that FDM will be discussed in Chap. 3. Instead, in this section, we
additionally review primordial black holes (PBHs), which are also viable dark matter
candidates as an alternative to CDM.

2.3.1 Baryon physics
Baryon physics has been proposed as a potential solution to the small-scale problems
within the standard model assuming CDM. Recent simulations that include the effects
of star formation and supernova explosions, such as NIHAO [92] and FIRE-2 [29], have
shown that the power-law index α of the dark matter halo density profile near the center
deviates from α = −1, i.e., the NFW profile. This change in the density profile due to
baryon physics is believed to depend on the total stellar (galaxy) mass or the stellar-to-
halo mass ratio [93, 94, 27]. For small stellar-to-halo mass ratios of Ms/Mh ≲ 10−4, which
corresponds to ultra-faint galaxies, the system is dominated by dark matter and the effect
of star formation is minimal, resulting in a density profile close to the NFW profile, α =
−1. As the mass ratio increases, sufficient star formation occurs and supernova explosion
of heavy stars reduces the central dark matter density. The effect of baryon physics
is most pronounced around Ms/Mh ≃ 0.005, leading to a core-like density profile with
α ≃ 0. At this point, typical galaxy masses range from Ms ≃ 108−9 M⊙, corresponding
to dwarf galaxies. As the mass ratio increases further, the gravitational potential of
the baryons pulls back the dark matter ejected by the supernova explosion, making the
density distribution more cuspy, α ≲ −1. As such, the power-law index of the dark matter
density profile is mass-dependent, and the core profile can also be generated due to baryon
physics, indicating that the small-scale problems such as the core-cusp problem [27].

In addition to the baryon physics within the satellite galaxies mentioned above, inter-
actions between the satellite and the Milky Way including tidal stripping, disk shocking,
and ram pressure stripping, act as additional mechanisms that reduce the central mass of
the satellite galaxies. Tidal stripping occurs when the gravitational forces exerted by the
host galaxy (Milky Way) exceed the gravitational binding force of the satellite galaxy,
leading to the loss of mass, particularly in the outer regions of satellites. Disk shock-
ing occurs when satellite galaxies pass through the disk of the host galaxy. The sudden
change in gravitational potential causes stars and dark matter to gain energy and inter-
nal heating, facilitating matter escape. Ram pressure stripping occurs when a satellite
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galaxy moves through the hot diffuse gas in the halo of the host galaxy. This gas exerts
pressure on the interstellar medium of the satellite, removing gas and suppressing star for-
mation. The importance of these phenomena has been shown in many galaxy formation
simulations, and they might contribute to solving the too-big-to-fail problem [95, 96].

2.3.2 Alternative dark matter models
In Sec. 2.3.1, we discuss the possible solution to the small-scale problems within the frame-
work of the ΛCDM model. In this section, we focus on an alternative approach to altering
small-scale structures, which involves changing the dark matter model. Since CDM is a
simple model that assumes non-relativistic when decoupled from the thermal bath and
neglects collisionless damping, and that non-gravitational interactions are ignored, a nat-
ural modification to the CDM is to include collisionless damping and non-gravitational
interactions. Here we first review WDM, in which collisionless damping becomes impor-
tant, and then SIDM, which considers non-gravitational interactions. While PBHs might
not directly solve the small-scale problems, they are also viable dark matter candidates
without introducing new particles. Therefore, we also review them at the end of this
subsection. Again, FDM will be reviewed in Chap. 3.

WDM

We consider a thermal relic dark matter model with a non-negligible velocity dispersion
in the early universe. This dispersion causes collisionless damping, also known as free-
streaming damping, where the free streaming of dark matter smooths out small-scale
density perturbations, preventing their growth and thereby suppressing structure forma-
tion. The free streaming scale can be estimated as [97]

λfs ≃
canr

H0

√
Ωr0

, (2.25)

where anr is the scale factor when the dark matter becomes non-relativistic and Ωr0 is
the mean radiation density in the current universe. Here, we ignore the logarithmic
term arising from the period between the non-relativistic transition and matter-radiation
equality. The time when dark matter becomes non-relativistic can be approximated by
the condition where its rest mass energy equals its thermal kinetic energy,

kBTnr =
1

3
mc2. (2.26)

where Tnr is the temperature at that time. Now we consider the warm relic with a mass
on the order of keV/c2. Then, Tnr is much lower than the electron-positron annihilation
temperature of about 1 MeV/kB, leading to the photon number density has already frozen
at Tnr. Thus, the scale factor at the non-relativistic transition is expressed as

anr =
T0
Tnr

=
3kBT0
mc2

, (2.27)

where T0 = 2.725 K is is the current photon temperature. Substituting Eq. (2.27) into
Eq. (2.25), the free-streaming scale can be represented as

λfs ≃ 82

(
mc2

10 eV

)−1

Mpc. (2.28)
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As an example, if we consider the neutrino whose mass is below 10 eV/c2 as a dark matter
candidate, the free-streaming scale exceeds that of galaxy clusters, making it inconsistent
with the observed structure of the universe. Such particles with a mass on the order of
eV/c2 are referred to as hot dark matter (HDM) and this dark matter model has been
ruled out. To suppress only sub-galactic scales, the dark matter mass must be larger than
that of HDM but smaller than that of CDM. Such a dark matter model, with properties
intermediate between HDM and CDM, is called WDM.

The WDM simulation shows that the linear matter power spectrum is expressed by
the following fitting formula [98, 99, 100, 21]

PWDM(k) = PCDM(k) {1 + (λfsk)
2ν}−10/ν (2.29)

with ν = 1.12. Here, the free-streaming scale λfs is expressed by

λfs = 70

(
mc2

1 keV

)−1.11(
Ωm0

0.25

)0.11(
h

0.7

)0.22

kpc, (2.30)

which is roughly consistent with the analytic estimation shown in Eq. (2.28). The corre-
sponding mass for this scale is

Mfs =
4

3
πρ̄

(
λfs

2

)3

≃ 7.1× 106
(
mc2

1 keV

)−3.33

M⊙, (2.31)

assuming the Planck cosmological parameters [5]. In practice, the suppression of the
matter power spectrum extends to scales larger than the free-streaming length. The
scale that characterizes this suppression is called the half-mode scale, defined as the scale
where the matter power spectrum is reduced by 1/4 compared to the CDM case. From
Eq. (2.29), the half-mode scale can be expressed as

λhm = 2πλfs
(
2

ν
5 − 1

)− 1
2ν ≃ 13.93λfs. (2.32)

The half-mode mass Mhm is written as

Mhm =
4

3
πρ̄

(
λhm

2

)3

≃ 2.7× 103Mfs = 1.9× 1010
(
mc2

1 keV

)−3.33

M⊙. (2.33)

While we have shown the relation between the suppression scale of the structure formation
and the WDM mass for thermal relic particles, these relations are not uniquely determined
for non-thermal relic particles and depend on the specific production mechanism.

As shown above, the WDM model suppresses the small-scale structure formation,
which might help alleviate the small-scale problems such as the missing satellites problem.
The WDM model affects not only the number of small structures but also the formation
of larger mass halos. Since the universe forms structures hierarchically, the suppression of
small-scale perturbations delays the formation of halos with larger masses. Considering
that the central density of halos reflects the density of the universe at the time of their
formation, halos with masses close to Mhm experience a decrease in central density in
the WDM model. This reduction might help resolve the too-big-to-fail problem [101].
While the concentration parameters of WDM halos are reduced compared to those of
CDM halos, the central density profile remains cuspy [102], indicating that the core-cusp
problem might not be solved with the WDM model.
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The WDM mass is constrained by several observations. One such constraint comes
from the number count of observed satellite galaxies within the Milky Way, which sets
a lower limit on the number of subhalos and thus provides a lower bound on the WDM
mass. The derived constraints are m > 2.3 keV/c2 [103] and m > 1.6 keV/c2 [104]. The
differences in these limits arise from subtle variations in the assumptions, such as the mass
of the Milky Way-sized halo and modeling of completeness limits for satellite detections.
The strictest constraint is obtained from the power spectrum of stellar streams and the
number of dwarf galaxies, m > 6.2 keV/c2 [105]. It is worth noting that the stellar stream
is sensitive to tidal stripping effects from passing subhalos nearby and thus provides a
means of measuring their abundance, making it a valuable target for constraining dark
matter models.

The potential candidates for WDM particles include the gravitino, the supersymmetric
partner of the graviton, and the sterile neutrino, a hypothetical neutrino that does not
interact via the weak nuclear force. Since both of them are theoretical particles beyond
the standard model of elementary particle physics, confirming the existence of WDM
would open a new window into new physics.

SIDM

Next, we focus on the SIDM model [31], which includes non-gravitational interactions.
The scattering cross-section is denoted by σ, whereas the model is often characterized
by the scattering cross-section per unit mass σ/m since the mass of dark matter is not
known.

The cross-section determines the mean free path, expressed as λ = (nσ)−1 = (ρσ/m)−1,
where n is the number density of SIDM particles. In the high-density central region of the
SIDM halo, the mean free path is shortened and scattering events occur frequently on local
dynamical time scales. These interactions promote energy exchange between dark matter
particles and shape the central density distribution of the SIDM halo into an isothermal
form. Conversely, in the outer regions where the number density decreases, collisions
become less frequent and the SIDM halo behaves like a CDM halo. The transition radius
r1 at which this change occurs can be evaluated under the following conditions [106],

⟨σv⟩
m

ρ(r1)tage ≃ 1, (2.34)

which ensures that scattering occurs at least once during the halo age denoted by tage.
The ensemble average is taken over the velocity, which is assumed to follow the Maxwell–
Boltzmann distribution [107]. With this transition radius r1, the SIDM halo density
profile can be written as,

ρ(r) =

{
ρiso(r) r < r1

ρNFW(r) r > r1
, (2.35)

where ρiso(r) denotes the isothermal density profile, and ρNFW(r) represents the NFW
profile. The isothermal density profile in the inner region can be derived as follows.
Since SIDM particles behave like an isothermal gas, the equation of state is given by
p = ρv2rms, where p is the pressure and vrms is the velocity dispersion. Assuming hydrostatic
equilibrium in the inner halo, the Euler equation ∇p = −ρ∇Φtot holds, where Φtot is the
total gravitational potential from dark matter and baryon. The total potential satisfies
the Poisson equation, ∇2Φtot = 4πG(ρ+ρb), with ρb representing the baryon density. By
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combining them, we can obtain the equation for the density,

v2rms∇2 ln ρ = −4πG(ρ+ ρb). (2.36)

Setting the gravitational potential at the center as zero and defining the central density
as ρ0, the isothermal density profile can be expressed as [108]

ρiso(r) = ρ0 exp
(
−Φtot(r)

v2rms

)
, (2.37)

from which we can see that a core, i.e., ρ = const., is formed near the center of the SIDM
halo. The core radius depends on the cross-section; as the cross-section increases, thermal
exchanges become more efficient, resulting in a larger core radius.

While the center of the SIDM halo has been thought to be expressed with a core
profile as shown above, recent simulations suggest that the core-collapse occurs long after
the core formation time [109, 110, 111, 112]. This is caused by the following mechanisms.
Due to the scattering, heat flows from the inner hot region to the outer cool region. This
heat loss causes the dark matter particles to infall, further increasing the temperature
at the center. This negative heat capacity of a self-gravitating system accelerates the
infall as the negative heat gradient becomes steeper, leading to a denser cuspy profile,
known as the core-collapse process [113]. The relevant timescale for the core-collapse is
approximately 10 times the core-formation time in a tidally truncated halo and around
100 times larger in an isolated (field) halo. Here, the core-formation (relaxation) timescale
can be expressed as [113, 110, 114]

tr ≃
m

3ρs⟨σv⟩
. (2.38)

with ρs is the scale density of the NFW profile. The central density profile of the core-
collapsed SIDM halo follows ρ ∝ r−3, which is much steeper than the NFW profile [111].

Since the SIDM halo creates the cored density profile, before the core-collapse phase,
the SIDM model might alleviate the core-cusp problem. [31]. Due to the reduction of
the central density compared to the NFW profile, the too-big-to-fail problem might also
be alleviated with the SIDM model [115]. The SIDM model is also known to address the
diversity problem of galactic rotation curves [106]. This arises from the high sensitivity of
SIDM cores to the underlying baryon distribution, as can be seen in Eq. (2.37), where the
central density profile is determined by the gravitational potential, which relates to the
baryon distribution. However, SIDM simulations show that the number of substructures
is almost the same as in the CDM case, demonstrating that the SIDM model does not
significantly alleviate the missing satellite problem [116].

Numerous studies have attempted to constrain the SIDM cross-section based on ob-
servations (see [117] for a recent review). For instance, analysis of strongly lensed images
of galaxy clusters to measure dark matter density profiles excludes σ/m > 0.13 cm2/g
[118]. The sphericity of the SIDM halo due to the scatterings places a constraint on the
cross-section, excluding σ/m > 0.1 cm2/g, as determined by analyzing the central density
of a galaxy cluster [119, 120]. A direct constraint on the cross-section has been obtained
from analyses of the morphology of the hot gas, dark matter, and galaxies in a merging
galaxy cluster, yielding an upper limit of σ/m < 1 cm2/g [121]. Considering the mean
free path of the Milky Way halo to alleviate the core-cusp and the missing satellite prob-
lems, the cross-section is constrained to 0.45 ≲ σ/m ≲ 450 cm2/g, which is comparable to
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the neutron-neutron scattering cross-section [31]. For lower-mass systems such as dwarf
galaxies, observed central densities are better explained by a larger cross-section, within
the range σ/m < 30 − 100 cm2/g [122]. These constraints suggest that the cross-section
should depend on the velocity to explain the data from dwarf galaxies (v ≃ 10 km/s) to
galaxy clusters (v ≃ 1000 km/s); the cross-section needs to decrease as the velocity dis-
persion increases. Several models have been proposed where the cross-section depends on
velocity. One such model describes self-interactions using a Yukawa potential, mediated
by a dark photon. By setting the dark matter mass to 15 GeV/c2 and the dark photon
mass to 17 MeV/c2, the resulting cross-section aligns with observational constraints [106].

PBH

PBHs are hypothetical black holes formed in the early universe [32, 33] (see [123, 124] for
recent reviews). Although PBHs might not be a direct solution for small-scale problems,
we review them here because PBHs are viable dark matter candidates and potential al-
ternatives to CDM. Various formation scenarios are considered, such as the gravitational
collapse during the matter-dominant era [125] and the collapse of large isocurvature per-
turbations [126, 127], however, the most plausible mechanism is the gravitational collapse
of overdense regions during the radiation-dominant era following inflation [33]. One of
the most interesting features is that PBHs can form across a wide range of masses de-
pending on the collapsing time [128]. While the PBHs whose mass is lower than 1015 g
would have evaporated through the Hawking radiation [129], the PBHs with larger masses
could still exist in the current universe and potentially contribute to dark matter. This
scenario is interesting since we do not need to assume the existence of new particles,
such as WIMPs and supersymmetric particles, to explain dark matter, which is one of
the main motivations for PBHs. Furthermore, PBHs might explain other astrophysical
phenomena, including the unexpected observation of high-redshift massive galaxies [130]
and the detection of stochastic gravitational waves [131], further motivating the study of
PBHs.

PBHs forming during the radiation-dominant era have initial masses close to the Hub-
ble horizon mass, MH, given by

MPBH = γMH =
4π

3
γρ̄R3

H = γ
c3t

G
≃ 2.03× 105γ

(
t

1 sec

)
M⊙, (2.39)

where γ ≲ 1 is the numerical factor and depends on the details of gravitational collapse.
The mean density and the Hubble radius are denoted by ρ̄ and RH, respectively. In the
third equality, we use the relation RH = c/H = 2ct with the Hubble parameter obtained
from the Friedmann equation,

H2 =
8πG

3c2
ρ̄ =

4π3Gk4B
45h̄3c5

g⋆T
4, (2.40)

where g⋆ represents the number of relativistic degrees of freedom. The collapsing time t
can be calculated by integrating the Friedmann equation, being expressed as,

t =

√
45

16π3g⋆
h̄c2mPl(kBT )

−2 ≃ 0.738
( g⋆
10.75

)− 1
2

(
kBT

1 MeV

)−2

sec. (2.41)

Here, mPl =
√
h̄c/G represents the Planck mass. From Eq. (2.39), we can see that PBHs

can form over a wide mass range, with the minimum mass corresponding to those that
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collapsed at the Planck time, t ≃ 10−43 sec, yielding MPBH ≃ 10−5 g. Assuming adiabatic
expansion after PBH formation, the initial mass fraction can be expressed as

β(MPBH) =
ρPBH(ti)

ρ̄(ti)
=

4MPBH

3kBTi

nPBH(t0)

s(t0)

≃ 7.06× 10−18γ−
1
2

(
h

0.67

)2 ( g⋆i
106.75

) 1
4

(
MPBH

1015 g

) 1
2

ΩPBH(MPBH), (2.42)

where ΩPBH(MPBH) is the present-day density parameter defined by

ΩPBH(MPBH) =
ρPBH(t0)

ρcr(t0)
, (2.43)

with ρcr being the critical density. To derive Eq. (2.42), we use the relation ρ̄ = 3skBT/4
and conservation of the ratio of the number density to the entropy density nPBH/s. Note
that the following variable is often used to simplify the expressions,

β′(MPBH) = γ
1
2

(
h

0.67

)−2 ( g⋆i
106.75

)− 1
4
β(MPBH). (2.44)

While PBHs with masses smaller than 1015 g would have evaporated by now due to
Hawking radiation, those with masses larger than 1015 g can survive to the present day
and potentially contribute to the dark matter content of the universe. For non-evaporated
PBHs, the fraction contributing to dark matter is parameterized by

fPBH(MPBH) =
ΩPBH(MPBH)

ΩCDM
≃ 3.81× 108β′(MPBH)

(
MPBH

M⊙

)− 1
2

. (2.45)

Thus, the current abundance of PBHs is parameterized by their mass MPBH and their
mass fraction fPBH. Since the relation between these parameters depends on the forma-
tion mechanism of the PBHs, i.e., β′ in Eq. (2.45), observational constraints on these
parameters are essential.

As an example, we consider the scenario where collapse occurs from inhomogeneities
during the radiation-dominant era. When the equation of state is represented by p =
ωρc2 with ω = 1/3 for radiation, the overdensity must exceed the threshold value δc ≃
ω to overcome the pressure to collapse. The probability distribution of the smoothed
density contrast over a scale corresponding to the horizon radius δ(RH) is expressed with
a Gaussian window function as

p(δ(RH)) =
1√

2πσ(RH)
exp

(
− δ2(RH)

2σ2(RH)

)
, (2.46)

where σ(RH) is the variance of mass fluctuation within the Hubble horizon, given by,

σ2(RH) =

∫ ∞

0

W̃ 2(kRH)Pin(k)
dk

k
. (2.47)

Here, W̃ 2(kRH) = exp
(
−1

2
k2R2

H
)

is the Fourier transform of the Gaussian window func-
tion, and Pin(k) is the primordial matter power spectrum. Using the Press-Schechter
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formalism [132], the initial mass fraction of PBHs can be expressed with the complemen-
tary error function as,

β(MPBH) = 2

∫ ∞

δc

p(δ(RH))dδ(RH) = erfc
(

δc√
2σ(RH)

)
. (2.48)

Since the above expression shows the initial mass fraction for a given PBH mass, the
relation between the PBH mass MPBH and their mass fraction fPBH is specified in this
specific scenario [133].

The PBH mass and the mass fraction of PBH to total dark matter are constrained
by broad observational targets. One of the most effective methods is the analysis of
microlensing events. One example comes from the Subaru Hyper Suprime-Cam (HSC)
observation of M31, where tens of millions of stars were monitored for seven hours. This
search yielded only a single microlensing event, leading to an upper limit on the mass
fraction with PBH mass in the range MPBH = 10−11 to 10−6 M⊙ [134]. This constraint is
further refined by [135] using data from the Panchromatic Hubble Andromeda Treasury
(PHAT) survey, resulting in a weaker limit. The ultra-high magnification event Icarus
[44], observed during two-year HST observation, places constraints on PBHs in the range
MPBH = 10−5 to 104 M⊙ by considering the peak magnification [136]. Similarly, the
EROS-2 project, which monitored millions of stars in the Magellanic Clouds over 6.7
years, finds an optical depth lower than expected, constraining PBHs in the range 0.6×
10−7M⊙ < MPBH < 15M⊙ when combined with EROS-1 results [137]. The MACHO
project places constraints in the range MPBH = 10−6 to 10−3 M⊙ based on the non-
detection of long-duration microlensing events toward the Large Magellanic Cloud (LMC)
[138]. Furthermore, the OGLE survey analyzes 2622 microlensing events from five years
of Galactic bulge observations, constraining PBHs in the range MPBH = 10−6 to 10−3 M⊙
under the null hypothesis that PBH microlensing events are absent [139]. Extending
the monitoring to 80 million stars in the LMC for 20 years, no events with durations
longer than one year are found, resulting in the most stringent constraint to date for
MPBH = 10−6 to 103 M⊙ [140]. Data from the two-year observation by the Kepler satellite,
searching for short-duration microlensing bumps, excludes PBHs in the range MPBH =
2 × 10−9 to 10−7 M⊙ due to the lack of detections [141, 142]. Gravitational lensing
magnification probabilities of type Ia supernovae also constrain the mass fraction in the
mass range MPBH > 0.01 M⊙, with the lower limit of the mass determined by the ratio of
the supernova size to the lens Einstein radius [143]. Finally, millilens searches using high-
quality very long baseline interferometry (VLBI) maps of 300 sources constrain PBHs in
the mass range MPBH = 106 to 108 M⊙ [144].

In addition to the constraints from microlensing events listed above, the parameter
space of PBHs can also be constrained by dynamical processes. These include the dynam-
ical evolution of stars in the dwarf galaxy Segue I [145], the effect of dynamical heating on
the ultra-faint dwarf galaxy Eridanus II [146], the dynamical motion of 26 member stars
in Eridanus II observed by the MUSE-Faint survey using the Multi Unit Spectroscopic
Explorer on the Very Large Telescope (VLT) [147], and the disruption of wide binary sys-
tems [148]. Moreover, the impact of accreting PBHs on the CMB frequency spectrum, as
well as on the angular temperature and polarization power spectra, provides constraints
on the PBH abundance [149]. Additionally, the merger rate of black hole binaries de-
tected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), Virgo, and
KAGRA constrain the PBH parameter space [150, 151]. These studies suggest that PBHs
may not account for the entire dark matter components except for the mass window be-
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Figure 2.2: The previous constraints on the PBH mass and mass fraction of PBH to the
total dark matter, assuming the monochromatic function. The purple region is excluded
by evaporations [152]. The blue, violet, yellow, brown, purple and light blue regions by
the microlensing results from HSC [134], Kepler [142], EROS [137], OGLE [139], MACHO
[138] and supernovae (SNe) [143], respectively. The red and blue regions on the right
are excluded by LIGO/Virgo [150] and Planck data [149]. The broken lines show the
constraints from dynamical processes, including the survival of stars in Segue I (orange)
[145] and Eridanus II (dark orange) [146], and the survival of wide binaries (green) [148].
The black solid lines show the combined constraint. This figure is adapted from [124].

tween MPBH ≃ 10−15 − 10−11 M⊙. In Fig. 2.2, the summary of the PBH constraints is
shown.



Chapter 3

Fuzzy dark matter

Fuzzy dark matter (FDM) is one of the alternatives to cold dark matter (CDM) to alleviate
small-scale problems [34]. The FDM consists of scalar particles minimally coupled to
gravity with negligible self-interaction whose mass is around m ≃ 10−24 − 10−20 eV/c2.
Such a small mass results in the de Broglie wavelengths on a cosmological scale,

λdB

2π
=

h̄

mv
= 1.92 kpc

(
mc2

10−22 eV

)−1(
v

10 km/s

)−1

. (3.1)

Since the de Broglie wavelength defines the scale at which wave-like behavior dominates,
the small-scale structure formation is influenced by the wave nature of the FDM, which
could potentially address the small-scale problems.

In this chapter, we start with reviews of the basic equations in Sec. 3.1, the liner
structure formation in Sec. 3.2, and the nonlinear structures in Sec. 3.3. In Sec. 3.4, we
show the core-halo mass relation based on our recent work presented in [47]. In the rest of
this chapter, we review the distribution of FDM subhalos in Sec. 3.5, and the sub-galactic
matter power spectrum in Sec. 3.6. Finally, we show the current constraints on the FDM
mass from various observations in Sec. 3.7. From the following in this chapter, we use the
natural unit c = h̄ = kB = 1.

3.1 Schrödinger-Poisson equation
To obtain the governing equation of the FDM, we start with the action of a scalar field
minimally coupled to the gravity without self-interaction [153, 154, 155],

S =

∫
d4x

√
−gL, (3.2)

where the Lagrangian is given by

L = −1

2
gµν∂µϕ∂νϕ− 1

2
m2ϕ2, (3.3)

with m being the mass of the FDM and g being the determinant of the metric gµν . The
first and second terms indicate the kinetic and mass terms, respectively. The equation of
motion (EoM) of the scalar field can be obtained by taking the variation of the action,
which results in the Euler-Lagrange equation,

δ(L
√
−g)

δϕ
− ∂µ

(
δ(L

√
−g)

δ(∂µϕ)

)
= 0. (3.4)
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By substituting the Lagrangian given by Eq. (3.3), we can obtain the EoM, known as the
Klein-Goldon equation, (

∇µ∇µ −m2
)
ϕ = 0, (3.5)

where ∇µ is the covariant derivative and the first term can be rewritten as

∇µ∇µϕ =
1√
−g

∂µ(
√
−g∂µϕ). (3.6)

Considering the homogeneous and isotropic metric in the expanding flat universe, known
as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, with the perturbations
corresponding to the Newtonian potential Φ(t,x) and the spatial curvature Ψ(t,x),

gµν(t,x) =


−1− 2Φ 0 0 0

0 a2(t)(1− 2Ψ) 0 0
0 0 a2(t)(1− 2Ψ) 0
0 0 0 a2(t)(1− 2Ψ)

 , (3.7)

with |Φ|, |Ψ| ≪ 1. Note that x denotes the comoving coordinate. The inverse of the
metric is expressed by

gµν(t,x) =


−1 + 2Φ 0 0 0

0 a−2(t)(1 + 2Ψ) 0 0
0 0 a−2(t)(1 + 2Ψ) 0
0 0 0 a−2(t)(1 + 2Ψ)

 . (3.8)

Focusing on non-relativistic matter perturbations on scales far below the horizon, the
anisotropic components of the stress tensor become negligible, leading to the relation
Ψ = Φ. Substituting the metric into the Klein-Gordon equation, Eq. (3.5), we can obtain
the following equation,

(1− 2Φ)
∂2ϕ

∂t2
− 4(1 + 2Φ)

∂Φ

∂t

∂ϕ

∂t
+ 3H(1− 2Φ)

∂ϕ

∂t
− 1

a2
(1 + 2Φ)∇2ϕ+m2ϕ = 0. (3.9)

Since the de Broglie wavelength of the FDM is larger than the inter-particle distance, the
wavefunction of the FDM overlaps and the macroscopic number of the FDM particles are
in the same state, i.e., the coherent state, resulting in FDM behaving non-relativistically.
To take the non-relativistic limit of the Klein-Gordon equation and obtain the wavefunc-
tion ψ of the coherent state, the following relation is used to remove the rest energy,

ϕ(t,x) =
1√
2m

(
ψ(t,x)e−imt + ψ∗(t,x)eimt

)
. (3.10)

Here, the complex conjugate of the wavefunction in the second term corresponds to the
antiparticle of the FDM. Note that the mass dependence of the coefficient is introduced
to compensate for the difference of the mass dimensions, [ϕ] = 1 and [ψ] = 3/2. By sub-
stituting Eq. (3.10) into Eq. (3.9), the non-linear Schrödinger equation can be obtained,

i

(
∂ψ

∂t
+

3

2
Hψ

)
= − 1

2ma2
∇2ψ +mΦψ, (3.11)

where the non-relativistic relation i∂/∂t≪ m and Φ ≪ 1 are used to obtain this equation.



3.1. SCHRÖDINGER-POISSON EQUATION 25

Since the non-linear Schrödinger equation describes the dynamics of the coherent state,
it can also be obtained from the Heisenberg equation of motion with the second-quantized
N-body Hamiltonian [156],

Ĥ =

∫
d3x Ψ̂†(x)

(
− 1

2ma2
∇2 +mΦ

)
Ψ̂(x), (3.12)

where the Bose operators Ψ̂†(x) and Ψ̂(x) create and annihilate a particle at position x,
respectively. They satisfy the commutation relation [Ψ̂(x), Ψ̂†(x′)] = δ(x−x′). By using
the creation operator â†

i and the annihilation operator âi with the subscript i denoting
the state, the Bose operators can be expressed as,

Ψ̂†(x) =
∑
i

â†
iϕ

∗
i (x), (3.13)

Ψ̂(x) =
∑
i

âiϕi(x). (3.14)

Here, ϕi(x) = ⟨x|1i⟩ represents the wavefunction for a single particle in the i-th state,
|1i⟩, i.e., the square root of the probability of a single particle locating at x. With the
creation and annihilation operators, which satisfy the commutation relation [ai, a

†
j] = δij,

the state can be expressed as â†
i |0⟩ = |1i⟩ and âi|1i⟩ = |0⟩. Now the Heisenberg equation

is calculated as

i
∂Ψ̂(t,x)

∂t
= [Ψ̂(t,x), H(t)] =

(
− 1

2ma2
∇2 +mΦ

)
Ψ̂(t,x). (3.15)

By applying the Bogoliubov’s prescription or the mean-field approximation,

Ψ̂(t,x) = ⟨Ψ̂(t,x)⟩+ δΨ̂(t,x) ≡ ψ(t,x) + δΨ̂(t,x), (3.16)

where the ensemble average is taken in terms of the second quantization, and by substitut-
ing Eq. (3.16) into Eq. (3.15), we can obtain the non-linear Schrödinger equation with the
classical wavefunction ψ. Note that the wave nature is incorporated in the Schrödinger
equation since ψ is first-quantized.

The Newtonian potential satisfies the Poisson equation, which can be obtained from
the first-order perturbation of the time-time component of the Einstein equation. The
Einstein equation is

Gµ
ν = 8πGT µ

ν . (3.17)
The energy-momentum tensor can be defined from the Lagrangian as

Tµν = − 2√
−g

∂(L
√
−g)

∂gµν
. (3.18)

By substituting the Lagrangian of the scalar field, Eq. (3.3), it can be expressed as

T µ
ν = gµα

∂ϕ

∂xα
∂ϕ

∂xν
− gµν

(
1

2
gαβ

∂ϕ

∂xα
∂ϕ

∂xβ
+

1

2
m2ϕ2

)
. (3.19)

The time-time component of the energy-momentum tensor is

T 0
0 =

1

2
(−1 + 2Φ)

(
∂ϕ

∂t

)2

− 1

2
a−2(1 + 2Φ)(∇ϕ)2 − 1

2
m2ϕ2. (3.20)
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Since the spatial derivative of ϕ can be neglected for the homogeneous part of the field,
it can be written as

T 0
0 ≃ −1

2

(
∂ϕ

∂t

)2

− 1

2
m2ϕ2. (3.21)

From the relation T 0
0 = g00T

00 ≃ −ρ, the density of the scalar field can be expressed as

ρ =
1

2

(
∂ϕ

∂t

)2

+
1

2
m2ϕ2. (3.22)

By substituting Eq. (3.10) and using the condition i∂/∂t≪ m, the density can be written
in terms of the wavefunction,

ρ = m|ψ|2. (3.23)
Therefore, the first-order perturbation of the right-hand side of the Einstein equation is

8πGδT 0
0 = 8πG(m|ψ|2 − ρ̄), (3.24)

where the ρ̄ is the spatially-averaged matter density in the universe. Since the first-order
perturbation of the time-time component of the Einstein tensor is expressed by [52]

δG0
0 = 6H

∂Φ

∂t
+ 6ΦH2 + 2a−2∇2Φ, (3.25)

we finally obtain the Poisson equation,

∇2Φ = 4πGa2(m|ψ|2 − ρ̄), (3.26)

where the super-horizon scale is ignored to obtain the Poisson equation. The Eqs. (3.11)
and (3.26) are the governing equations of the FDM, called Schrödinger-Poisson (SP)
equation, in the expanding universe.

The SP equation can be transformed into a fluid representation. To do this, we first
decompose the wavefunction

ψ = |ψ|eiθ =
√

ρ

m
eiθ, (3.27)

where the phase of the wavefunction is related to the velocity,

v =
1

ma
∇θ. (3.28)

By substituting Eqs. (3.27) and (3.28) into Eq. (3.11), the fluid equations are obtained,
called the Madelung equation [157],

∂ρ

∂t
+ 3Hρ+

1

a
∇ · (ρv) = 0, (3.29)

∂v

∂t
+Hv +

1

a
(v · ∇)v = −1

a
∇Φ +

1

2m2a3
∇
(
∇2√ρ
√
ρ

)
. (3.30)

Here, Eq. (3.29) represents the continuity equation and Eq. (3.30) is the Euler equation,
which are obtained from the imaginary and real parts, respectively. The second term
on the right-hand side of the Eq. (3.30) is called the quantum pressure term, which
originates from the uncertainty principle. The Euler equation in the FDM model has
a similar form to the Jeans equation obtained from the Boltzmann equation, however,
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they have different natures of the pressure terms. While the quantum pressure term is
solely determined by the density profile, the pressure term in the Jeans equation needs the
local velocity dispersion as well as the density profile. It means that while the Madelung
equation is the closed form, the latter needs an effective equation of state, which relates
the velocity dispersion and the density, to solve the evolution of the system. The quantum
pressure term is expressed by the divergence of the stress tensor as

∇ · σ =
ρ

2m2a2
∇
(
∇2√ρ
√
ρ

)
, (3.31)

σij =
ρ

4m2a2
∂2 log ρ
∂xi∂xj

. (3.32)

The Madelung equation is not fully consistent with the SP equation since the velocity
is ill-defined where the density equals zero. Equivalently, the Madelung equation only
considers a vortex-free fluid since the condition ∇ × v = 0 satisfies. By imposing the
additional quantization condition, ∮

L

v · dl = 2πj (3.33)

with j ∈ Z is needed to be equivalent [158].

3.2 Linear structure formation
The linear structure formation can be studied using the Madelung equation. By taking
the spatial average of the continuity equation, Eq. (3.29) can be expressed as

d

dt
(ρ̄a3) = 0, (3.34)

which is consistent with the conservation law of the matter density in the expanding
universe. The fluctuation of the density can be obtained by subtracting the spatially
averaged density,

δ =
ρ− ρ̄

ρ̄
. (3.35)

Now we can rewrite the Madelung equation in terms of the fluctuation δ. In the linear
regime where the conditions δ,v,Φ ≪ 1 satisfy, the continuity equation becomes

∂δ

∂t
+

1

a
∇ · v = 0, (3.36)

and the Euler equation is

∂v

∂t
+Hv = −1

a
∇Φ +

1

4m2a3
∇3δ. (3.37)

By applying (∂/∂t+ 2H) to Eq. (3.36) and a−1∇ to Eq. (3.37), and then taking the
difference of them, we can obtain the evolution equation of the density fluctuation,

∂2δ

∂t2
+ 2H

∂δ

∂t
+

(
1

4m2a4
∇4 − 4πGρ̄

)
δ = 0. (3.38)
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It is useful to Fourier transform the fluctuation δ as,

δ(t,x) =

∫
d3k

(2π)3
eik·xδ̃(t,k). (3.39)

The evolution of the fluctuation in the Fourier mode is

∂2δ̃

∂t2
+ 2H

∂δ̃

∂t
+

(
k4

4m2a4
− 4πGρ̄

)
δ̃ = 0. (3.40)

From the third term, the sound speed originating from the quantum pressure can be
defined as

c2s =
k2

4m2a2
. (3.41)

Equation (3.40) is equivalent to the equation for a particle in motion undergoing friction
in a time-varying potential,

V [δ̃] = −1

2

(
4πGρ̄− k4

4m2a4

)
δ̃2. (3.42)

The comoving Jeans scale kJ can be defined from Eq. (3.40), below which the structure
formation is suppressed. It can be expressed as [159]

kJ = (16πGm2ρ̄ a4)
1
4

= 70a
1
4

(
Ωm0

0.3

) 1
4
(

H0

70 km s−1 Mpc−1

) 1
2
(

mc2

10−22 eV

) 1
2

Mpc−1, (3.43)

where the Friedmann equation is used in the second equality. The corresponding Jeans
mass is

MJ =
4π

3
ρ̄

(
π

kJ

)3

≃ 1.5× 107a−
3
4

(
Ωm0

0.3

) 1
4 ( m

10−22 eV

)− 3
2
M⊙. (3.44)

When the scale of the fluctuation is larger than the Jeans scale, k ≲ kJ, the potential
given by Eq. (3.42) is a convex downward function and the fluctuation grows as the same
as in the CDM universe. Below the Jeans scale, k ≳ kJ, the potential is a convex upward
function, and the fluctuation evolved to zero, i.e., the structure is suppressed. To be
precise, the comoving Jeans scale evolves as kJ = const. in the radiation dominant era
and kJ ∝ a1/4 in the matter dominant era. From this behavior, the suppression of the
linear matter power spectrum is expected to occur below the Jeans scale at the matter-
radiation equality,

kJeq = 9

(
mc2

10−22 eV

) 1
2

Mpc−1, (3.45)

where we use the relation aeq = Ωr0/Ωm0 and Ωr0h
2 = 4.15 × 10−5 [52] to obtain this

equation. Indeed, the numerical simulation shows that the linear power in the FDM
model is suppressed than that in the CDM model as [34],

PFDM(k) = T 2
F(k)PCDM(k), (3.46)

where the suppression function is

TF(k) ≃
cosx3
1 + x8

, (3.47)
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with x = 1.61(mc2/10−22 eV)1/18 k/kJeq. The half-mode scale is defined where the linear
power drops by a factor of four [34, 159],

khm ≃ 0.57 kJeq

(
mc2

10−22 eV

)− 1
18

= 5.1

(
mc2

10−22 eV

) 4
9

Mpc−1. (3.48)

The corresponding mass called half-mode mass is,

Mhm =
4π

3
ρ̄

(
π

khm

)3

≃ 3.8× 1010 M⊙

(
mc2

10−22 eV

)− 4
3

. (3.49)

Due to the suppression of the linear power spectrum, related properties such as the con-
centration parameter of halos and the subhalo mass function would be different as shown
in the following sections.

3.3 FDM halo
The nonlinear structure formation, where the fluctuation is δ ≳ 1, is studied with simu-
lations [160, 161]. When considering the dynamics of collapsed objects, the effect of the
cosmic expansion is minimal. In this case, the SP equation is expressed by

i
∂ψ

∂t
= − 1

2m
∇2ψ +mΦψ, (3.50)

∇2Φ = 4πGm|ψ|2. (3.51)

Note that the Poisson equation is obtained directly from the time-time component of the
Einstein equation, i.e., not from the first-order perturbation. The SP equation is invariant
under the following transformation [162],

{x, t, ρ,m, ψ,Φ,M} → {αx, βt, β−2ρ, α−2βm, αβ−3/2ψ, α2β−2Φ, α3β−2M}, (3.52)

which is a crucial feature of the density profile of the FDM halo as described below.
The FDM halos have two important features, the soliton core located at the center

of each halo and the granular structures existing all over the halos, as shown in Fig. 3.1.
The presence of these non-linear structures has been revealed by the FDM simulations
solving the SP equation (e.g., [160, 161]). Although some simulations solve the Madelung
equation (e.g., [163]), they might not properly capture small-scale features since they
cannot properly handle the dynamics at ρ = 0, as mentioned in Sec. 3.1.

3.3.1 Soliton core
The soliton core is the ground state object and the density profile is empirically expressed
as [160]

ρsol(r) =
ρc

{1 + 0.091(r/rc)2}8
, (3.53)

where rc and ρc are the core radius and core density, respectively. The core radius is
defined where the density drops by half. The core density is related to the core radius
and the FDM mass as

ρc = 0.019

(
mc2

10−22 eV

)−2(
rc

kpc

)−4

M⊙ pc−3. (3.54)
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Figure 3.1: The slice of the density profile of the FDM simulation at redshift z = 0.1. The
soliton core resides in the center of the halo, while the granular structure resides outside
the core. These non-linear structures originate from the wave-like nature of FDM. This
figure is taken from [160].

From the empirical form of the core profile, the density is constant as a function of the
radius below the core radius and then drops sharply at radii larger than the core radius.
Since the soliton core can be expressed by the ground state solution of the SP equation,
the core radius can be estimated as the de Broglie wavelength of the FDM. The core mass
is defined as the enclosed mass within the core radius,

Mc =Msol(< rc) =

∫ rc

0

4πr2dr ρsol(r) = 5.3× 107
(

mc2

10−22 eV

)−2(
rc

kpc

)−1

M⊙. (3.55)

For a given FDM mass, the shape of the soliton core can be determined by a single
parameter such as the core radius or the core mass. As can be seen from Eqs. (3.54) and
(3.55), the central density becomes smaller and the core mass becomes smaller with the
larger core radius. These relations satisfy the scaling relation of the SP equation shown
in Eq. (3.52).

3.3.2 Granular structures
The outer region of the halo consists of numerous granular structures, mainly originating
from the interference of waves in excited states. Since the wavelength of each wavefunction
is approximately the de Broglie wavelength, the size of the granular structures is also the
same size. While the outskirt density profile is oscillating, the FDM simulations find
that the spatially averaged density profile is expressed by the NFW profile. Here, we
first present recent models of the outer density profile [164], which account for granular
structures, followed by a review of the concentration parameter in FDM halos.

Outer density profile

Since the outer density profile consists of numerous granular structures, we begin by
considering the internal density profile of each structure. The mass of a granular structure
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at position r′, Mc(r
′), can be estimated using the local average density of the halo,

ρNFW(r′), as
Mc(r

′) = ρNFW(r′)Vc, (3.56)
where Vc is the volume of each granular structure determined by the de Broglie wavelength,

Vc =
4

3
π

(
λdB

2

)3

. (3.57)

The internal density profile of a granular structure can be expressed in terms of a nor-
malized mass function u(r − r′) as

ρc(r ; r′) =Mc(r
′)u(r − r′). (3.58)

To ensure proper normalization, the mass function must satisfy∫
V

d3r u(r − r′) =

∫
Vϵ(r′)

d3r u(r − r′) = 1, (3.59)

where Vϵ(r′) is a three-dimensional sphere centered at r′, which is small compared to the
size of the halo but larger than the size of each clump. The mass function can be chosen
as a Gaussian, with the variance set to half the de Broglie wavelength,

u(r − r′) =

√
2

πλ2dB
exp

(
−2|r − r′|2

λ2dB

)
, (3.60)

which is consistent with the numerical simulation conducted by [165], where the Widrow-
Kaiser ansatz [166] is applied to reconstruct the density profile of the FDM halos. As-
suming that the granular structures are randomly distributed on small scales while main-
taining a fixed ensemble average for the number density, the density profile of the FDM
halo can be described as a superposition of these randomly distributed clumps,

ρout(r) =

∫
V

d3r′ρc(r ; r′)n(r′) =

∫
V

d3r′ρNFW(r′)Vcn(r
′)u(r − r′), (3.61)

where n(r) represents the number density of granular structures. Since ρNFW(r) is as-
sumed to remain constant within the small Vϵ sphere, this can be further simplified to

ρout(r) = ρNFW(r)

∫
Vϵ

d3r′ Vcn(r
′)u(r − r′), (3.62)

which is a general formula to characterize the outer profile of the FDM halo incorporating
the granular structures. Let each clump be indexed by j, with its center located at rj.
Then, the number density n(r′) can be expressed using the Dirac delta function as

n(r′) =
∑
j

δ
(3)
D (r′ − r′

j). (3.63)

Considering that the granular structures are distributed throughout the halos, the ensem-
ble average of the number density ⟨n(r)⟩ should be set to V −1

c . The ensemble average of
the FDM density is then expressed as,

⟨ρout(r)⟩ = ρNFW(r), (3.64)

which aligns with the assumed average halo profile.
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NFW profile

The spatially averaged density profile outside the soliton core is known to be described by
the NFW profile. As reviewed in Sec. 2.1.3, the concentration parameter and halo mass
determine the shape of the NFW profile. We review recent studies on the relation between
the concentration parameter and the halo mass, i.e., the cvir-Mh relation, in FDM halos
[167, 168]. These studies predict the different halo mass dependence on the concentration
parameter.

The cvir-Mh relation studied in [167] is based on the warm dark matter (WDM) scenario
discussed in [100], where the linear power spectrum is suppressed on small scales, similar to
the case of FDM. The suppression of the linear power spectrum delays structure formation,
leading to smaller values of the concentration parameter compared to the CDM case since
it correlates with the average density of the universe at the time of collapse. However,
WDM simulation indicates that the concentration parameter is suppressed at even lower
halo masses than the theoretical prediction by [58], i.e., Eq. (2.11) with the suppressed
linear power spectrum in the WDM model. This turnover behavior is likely attributed
to fragmentation from a large halo rather than hierarchical structure formation at small
scales. To account for this, the correction term is introduced. By setting the same cutoff
scale, this approach can be applied to the FDM case, and it is demonstrated that the
concentration parameters in FDM halos can be expressed as

cvir(Mh, z;FDM) = cB
vir(Mh, z;FDM)∆FDM(M0, γ0, γ1, γ2). (3.65)

Here, cB
vir(Mh, z;FDM) is calculated using Eq. (2.11) with the FDM linear power spectrum

given by Eq. (3.46). The additional suppression factor is represented by ∆FDM, which is
expressed as

∆FDM(M0, γ0, γ1, γ2) =

(
1 +

M0

fcollMh

)−γ0 (
1 + γ1

M0

Mh

)−γ2

, (3.66)

where γ0 = d ln cB
vir/d lnMh|Mh=4M0 , γ1 = 15, γ2 = 0.3, fcoll = 0.01, and

M0 = 1.6× 1010 M⊙

(
mc2

10−22 eV

)− 4
3

. (3.67)

The concentration parameters in FDM halos given by Eq. (3.65) can be related to those
in CDM halos in the following simpler form [47],

cvir(Mh, z;FDM) = cvir(Mh, z;CDM) F

(
Mh

Mhm
h

)
, (3.68)

where function F is defined as F (x) = (1 + axb)c with (a, b, c) = (9.431,−1.175,−0.232),
and Mhm

h is the half mode mass given by Eq. (3.49).
The other cvir-Mh relation in FDM halos studied in [168] refers to [169], which studies

how the suppressed power spectrum by arbitrary dark matter models affects the concen-
tration parameter. The inability of the theoretical model by [58] to capture the turnover
behavior in the cvir-Mh relation observed in the WDM simulation is attributed to its in-
accurate estimation of the collapse redshift, zcoll. To resolve this problem, they propose
that the concentration parameter cχvir for any dark matter scenario χ can be determined
by matching it to the concentration parameter of a CDM halo with the same collapse
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redshift. Specifically, if zχcoll represents the collapse redshift of a halo with mass Mχ
h at

redshift z in scenario χ, then the concentration parameter cχvir is obtained by

cχvir(M
χ
h , z) = cvir(M

CDM
h , z), (3.69)

where the halo mass MCDM
h is determined by the same collapse redshift,

zχcoll(M
χ
h , z) = zCDM

coll (MCDM
h , z). (3.70)

Here, the collapse redshifts can be calculated by Eq. (2.12) for given linear power spectra.
This method allows the prediction of concentration parameters in various dark matter
scenarios and shows good agreement with WDM simulation results. Based on this for-
mulation, the cvir-Mh relation in FDM halos can be expressed as [168]

cvir(Mh, z;FDM) = cvir(Mh, z;CDM) F

(
Mh

Mhm
h

)
, (3.71)

with the function F is the same as Eq. (3.68) but with different parameter sets, (a, b, c) =
(5.496,−1.648,−0.417).

Fig. 3.2 shows compare the cvir-Mh relations between predictions by [167] and [168] as
well as the CDM case. Here, the cvir-Mh relation for CDM halos, which is derived by the
largest CDM simulation [55], is shown by using the COLOSSUS [170]. While both models
predict that the turnover of the cvir-Mh relation occurs around Mh ≃ 4Mhm

h (≡ M4hm
h ),

four times larger than the half-mode mass, the relation obtained in [168] has a steeper
turnover than that of [167]. Moreover, the concentration parameter obtained by [168]
becomes cvir < 1 in halos with the Jeans mass, which might be unphysical. The halo mass
dependence on the concentration parameters in the FDM halos can be estimated with
that in the CDM halos, Eqs. (2.13) and (2.14), and the suppression factor F , leading to

cvir ∝M0.21
h Mh ≲M4hm

h , (3.72)
cvir ∝M−0.12

h Mh ≳M4hm
h . (3.73)

In the following section, we present our recent work on the core-halo mass relation. We
adopt the concentration derived by [167], as prediction by [168] appears to be underesti-
mated for halos around the Jeans mass as mentioned earlier. Note that we also use the
following fitting results,

f(cvir) ∝M0.22
h Mh ≲M4hm

h , (3.74)
f(cvir) ∝M−0.07

h Mh ≳M4hm
h , (3.75)

where f(cvir) ≡ ln(1 + cvir)− cvir/(1 + cvir).

3.4 Core-halo mass relation
Although we show the properties of the soliton core and the outer density profile in
Sec. 3.3, an additional condition is required to fully determine the total density profile.
Practically, the total density profile of the FDM halo can be expressed as

ρ(r) =

{
ρsol(r) r < rt

ρNFW(r) r > rt,
(3.76)
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Figure 3.2: The suppressed cvir-Mh relation in the FDM halos at redshift z = 0. The
FDM mass is set to m = 8 × 10−23 eV. The blue solid line shows the cvir-Mh relation
obtained from the largest cosmological CDM simulation [55]. To plot the red dash-dotted
and green dashed lines, the FDM suppression factors obtained by [167] and [168] are
considered, respectively. The vertical black dashed line and dotted lines indicate the half-
mode mass and the Jeans mass, respectively. This figure is taken from [47].

where rt represents the transition radius between the soliton core and the outer NFW
profile, which is approximately three times the core radius [160]. Note that granular
structures are neglected in this section.

Due to the scale symmetry of the SP system, i.e., Eq. (3.52), the soliton core can be
characterized by a single parameter for a given FDM mass m such as the core mass or
radius, which are related through Eq. (3.55). Meanwhile, the NFW profile is fully specified
for a given halo mass Mh and an assumed cvir-Mh relation. Thus, the total density profile
can be constructed by establishing a relation between the soliton core mass and the halo
mass, commonly referred to as the core-halo mass relation (CHMR). The primary goal of
this section is to derive the total density profile of FDM halos for a given halo mass Mh
and FDM particle mass m by considering CHMR.

This section builds upon our recent work on modeling the CHMR presented in [47]
and is structured as follows. In Sec. 3.4.1, we review the CHMRs in the previous studies
and outline the motivation for this study. Our modeling of the CHMR is presented in
Sec. 3.4.2, followed by results and a detailed analysis in Sec. 3.4.3 and Sec. 3.4.4, respec-
tively. A comparison between our model and previous studies is provided in Sec. 3.4.5.
Finally, we show the total density profile based on the CHMR in Sec. 3.4.6. We adopt
the concentration-halo mass relation for CDM halos as given by [55], and we use the
suppression function of the concentration in the FDM model obtained by [167], as shown
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in Eq. (3.68). In this section, we use the dimensionless Hubble parameter h = 0.7, the
present-day matter density Ωm0 = 0.30, and the dark energy density Ω�0 = 0.70. Addi-
tionally, we revert from the natural unit to the SI unit in this section.

3.4.1 Previous studies on the CHMR
The FDM halo profile described by Eq. (3.76) does not inherently specify the connection
between the core and halo masses. However, some underlying physical principles must
link the inner soliton core to the outer NFW profile, and the CHMR provides this relation.
In this sense, the CHMR is an important quantity in understanding the structure of FDM
halos. The CHMR is first studied by [171], who combine analytical estimates with fits to
FDM simulation data [160], providing the expression as

(1 + z)−
1
2Mc =

1

4

(√
ζ(z)

ζ(0)

Mh

Mmin,0

) 1
3

Mmin,0, (3.77)

where

Mmin,0 = 4.4× 107 M⊙

(
mc2

10−22 eV

)− 3
2
(
ζ(0)

337.1

) 1
4
(

H0

70 km Mpc−1 s−1

)− 3
2

×
(
Ωm0

0.3

)− 3
4
(

ρm0

40.8 M⊙ kpc−3

)
. (3.78)

This relation takes the form of a simple power law, Mc ∝ Mα
h , with a power-law index

α = 1/3. This CHMR is derived by assuming that the core radius is determined by
the de Broglie wavelength of FDM with the halo velocity dispersion, which scales as
M

1/3
h at leading order. However, different FDM simulations suggest varying power-law

indexes for the CHMR. For instance, [163] reports α = 5/9, while [162] finds α = 9/10.
It is suggested that the discrepancy in the CHMR may arise from varying levels of tidal
disruption of FDM halos, which are influenced by the simulation box size; halos in smaller
boxes tend to be more tidally disrupted [162]. Nevertheless, the largest cosmological
simulation conducted by [161], which includes a large number of FDM halos, also reports
notable scatter in the CHMR. This suggests that the CHMR may intrinsically contain
some scatter, regardless of simulation artifacts.

FDM simulations are computationally expensive due to the need for high spatial and
time resolution, making (semi-)analytic approaches crucial for studying the CHMR. Sev-
eral studies have attempted to (semi-)analytically construct the density profile of FDM
halos and/or the CHMR without relying on simulations. The total density profile con-
structed by [172] uses the CHMR relation [171] to calculate the core radius for a given
halo mass and imposes a continuity condition at a radius several times the core radius
to determine the concentration parameter of the outer NFW profile. In this approach,
the ratio between the core radius and the transition radius is allowed to vary with halo
mass, while the physical motivation is unclear. Another interpretation of the CHMR
relation [171] is discussed in [173], where the soliton core is determined by requiring that
the total energy per unit mass is equal in both the soliton core and the halo. An alterna-
tive approach to study the density profile of FDM halos is taken by [174] and [175], who
decompose the FDM halo profile into each eigenmode to investigate its time evolution
by considering the time-averaged potential in the SP equation. With this approach, the
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impact of the power-law index α on the density profile is studied [175]. The CHMR is
further investigated by solving the linearized SP equation with the NFW potential as a
background, showing that the CHMR cannot be fully described by a single power law
[176]. They also examine the impact of scatter in the cvir-Mh relation on the CHMR, con-
cluding that this scatter contributes partially (but not entirely) to the scatter observed
in the FDM simulations.

While such dedicated studies exist, no (semi-)analytic models have been able to fully
explain the scatter in the CHMR observed in simulations. This indicates that the CHMR
is not yet fully understood, highlighting the need for a physically motivated (semi-)analytic
model that can explain the scatter.

3.4.2 Modeling the CHMR
Our model assumes that the soliton core forms through the redistribution of mass from
the NFW profile due to the wave nature of FDM. While this assumption may not fully
capture the dynamics of FDM systems, it may be partially consistent with the setup
used in cosmological FDM simulations that apply the CDM power spectrum to the initial
conditions [160, 161]. In the following, we outline our physical model for the CHMR,
focusing on a simplified scenario of static and spherically symmetric FDM halos.

For a given halo mass Mh and a redshift z, we first construct the NFW profile by using
the cvir-Mh relation derived from the largest cosmological CDM simulation [55] along with
the FDM suppression factor obtained from [167]. Although FDM simulations use the
CDM initial conditions, the linear power should be suppressed during the evolution, as
they start from a sufficiently high redshift (z = 127). Since the concentration parameter
is derived from the linear power spectrum, we adopt the suppressed cvir-Mh relation. The
scatter of the concentration parameter around the mean value, which is specified by the
cvir-Mh relation, is assumed to follow a log-normal distribution with a 1σ scatter of 0.16
dex for all halos, regardless of redshift [60]. As a reminder, we use the Python package
COLOSSUS [170] to calculate the mean cvir-Mh relation.

We then obtain the characteristic radius r̃c from the NFW profile. Here we compare
two different physically motivated conditions to calculate the characteristic radius. The
first approach is based on the hydrostatic equilibrium condition, which we call the ”Jeans
model”. The second approach is based on a relaxation time condition, which we refer to
as the ”Relaxation model”.

The concept behind the Jeans model is that the characteristic radius is defined by the
scale at which the pressure of a single granular structure balances the gravity in a halo
that satisfies the hydrostatic equilibrium condition [177]. This radius can be determined
by setting v = 0 in the Jeans equation, Eq. (3.30), leading to

GMsol(< r̃c)

r̃c
≃ h̄2

m2r̃2c
. (3.79)

Here, Msol(< r) denotes the enclosed mass of the soliton core within a radius r. By ap-
proximating Msol(< r̃c) =MNFW(< r̃c), the characteristic radius can be determined from
the NFW profile by solving Eq. (3.79). In this model, the characteristic radius corresponds
to the de Broglie wavelength if we assume the Keplerian velocity v =

√
GMNFW(< r)/r

within halos,

r̃c ≃
λdB(r̃c)

2π
. (3.80)
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The model presented in [171] also approximates the core radius using the de Broglie
wavelength, however, it simplifies the calculation by assuming a constant halo velocity
dispersion, thereby neglecting the detailed internal density profile of the halo.

While the Jeans model determines the scale at which the wave nature of FDM becomes
significant, it does not consider the dynamical evolution of FDM halos. To incorporate the
effects of dynamical processes, we introduce the Relaxation model. The Relaxation model
is based on the idea that the characteristic radius is determined where the relaxation
time matches the age of the halo [153]. Considering granular structures, whose size is
approximately equal to the de Broglie wavelength, as quasi-particles with an effective
mass meff ≃ 4πρ(λdB/2)

3/3 where ρ represents the local density, the relaxation time can
be estimated based on two-body relaxation processes as [178],

trelax(r) ≃
0.1N

lnN tcr(r), (3.81)

where N denotes the number of quasi-particles, which is evaluated as N ≃ M(< r)/meff
with M(< r) ≃ 4πρr3/3 being the enclosed mass of halo within a radius r. The crossing
time at a radius r is given by tcr(r) = r/v. Substituting this into Eq. (3.81), we can derive
an expression for the relaxation time at radius r as

trelax(r) ≃
0.1

10

m3v2r4

π3h̄3
≃ 0.3 Gyr

( v

100 km s−1

)2( r

5 kpc

)4(
mc2

10−22 eV

)3

. (3.82)

For simplicity, we approximate lnN as lnN ∼ 10, ignoring its dependence on parameters.
This approximation is consistent within a factor of 2-3 for the mass range considered in
this study, which spans Mh = 107 − 1013 M⊙/h and mc2 = 8× 10−24 − 8× 10−22 eV. It is
important to note that the lnN factor is initially ignored in [153]. Given that the soliton
core, representing the ground state, forms at the center of halos through relaxation, we
define the characteristic radius as the radius where the relaxation time is equal to the age
of the halo,

trelax(r̃c) = tage, (3.83)
with the right-hand side representing the halo age. In this study, we assume that the age
of the halo at redshift z is the same as the age of the universe at that redshift.

After determining the characteristic radius, we calculate the mass-matching radius,
representing the region where mass redistribution occurs. We allow a small discrepancy
of order unity between the characteristic radius and the mass-matching radius, which is
parameterized by a free parameter p1, such that rm = p1r̃c. This parameter p1 is assumed
to be constant for all halos at a given redshift. The introduction of p1 helps to account
for uncertainties in the definitions of the characteristic radius.

Since the soliton core profile is fully defined by a single parameter for a given FDM
mass m, we can determine the core mass Mc by solving the mass continuity equation at
the mass-matching radius, MNFW(< rm) =Msol(< rm) where the left-hand side represents
the enclosed mass of the NFW profile, and the right-hand side corresponds to the mass
within the soliton core profile. These steps yield the CHMR for the FDM halos in our
model.

We select p1 to match the simulation results presented in [160] for low redshifts z < 1
and [161] at z = 3, since these simulations solve the SP equation in a cosmological volume.
After determining p1 by fitting, the core mass Mc in our model can be specified with four
parameters: the halo mass Mh, the redshift z, the degree of the deviation nσ of the
concentration parameter from the mean cvir-Mh relation (c(n)vir = cmean

vir × 100.16n), and the
FDM mass m.
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3.4.3 Results
In both models, once we determine r̃c, we use a parameter p1 to set the matching radius
and calculate the core mass. The redshift-dependent parameter p1 is obtained by fitting
our results to the CHMR obtained from [160] for redshifts z < 1 and from [161] at
redshift z = 3. We adopt a fiducial FDM mass of mc2 = 8.0×10−23 eV, while the original
simulations [160] and [161] use mc2 = 7.5× 10−23 eV and 7.0× 10−23 eV, respectively. To
align with the fiducial FDM mass, we rescale the original CHMR data using the scaling
relation of the SP equation. Both core and halo masses scale as M ∝ m−3/2, which can be
obtained by setting β = 1 in Eq. (3.52). It is important to note that this transformation
does not affect the time scale in the simulation.

Figure 3.3 presents the comparison of the CHMR between the Jeans model at redshift
z = 0 and the simulation data from [160] at redshift z < 1. Figure 3.4 shows a similar
comparison, but in this case, the Relaxation model is used. In both figures, the red
solid lines represent the mean CHMR in our models, where we employ the mean cvir-Mh
relation. The values of p1 are adjusted to match the simulation data, indicated by the
black dots. The best-fit values for p1 at low redshift (z < 1) are found to be p1 = 2.35
in the Jeans model and p1 = 0.11 in the Relaxation model. In the Jeans model, the
characteristic radius corresponds to the de Broglie wavelength, as shown in Eq. (3.80), and
it is reasonable to expect p1 to range between two and three, which results in a matching
radius larger than the de Broglie wavelength. In contrast, for the Relaxation model, where
many granular structures relax to form the core at the center of the halo, the number of
granular structures within the characteristic radius is much larger than one. Therefore,
the characteristic radius is expected to be much larger than the core/mass-matching
radius, and consequently, p1 should be smaller than unity. Both models show that the
CHMR can be approximately described by a double power law. For halos with masses
below 1011 M⊙/h, the CHMR aligns well with the empirical relation derived in [171],
represented by the black dashed lines in the figures. However, for more massive halos,
both models indicate a smaller power law index for the CHMR. The green dash-dotted and
blue dashed lines in the figures incorporate the 2σ scatter in the cvir-Mh relation, where
0.16 dex is adopted as 1σ. These 2σ CHMR lines provide a reference for the degree of
scatter. Notably, the three lines converge around a halo mass of Mh ≃ 107−8 M⊙/h which
can be interpreted as the minimum halo mass, as discussed in Sec. 3.4.4. Additionally,
the results reveal that more concentrated halos exhibit more massive cores. The scatter in
the Relaxation model is found to be larger than in the Jeans model. While this difference
can be clarified through a detailed analysis of the Jeans model, similar to what is done
for the Relaxation model in Sec. 3.4.4, such an investigation is beyond the scope of this
section, as it is not the primary focus.

Figure 3.5 compares the CHMR at redshift z = 3 between the Jeans model and the
simulation data from [161], while Fig. 3.6 presents the same comparison for the Relaxation
model. In both figures, the red solid lines represent the mean CHMR predicted by our
models, while the green dash-dotted and blue dashed lines correspond to the n = 2σ and
−2σ CHMRs, respectively, derived by varying the concentration parameter as the same
as Figs. 3.3 and 3.4. Again, we show these lines for reference to the degree of scatter, and
further detailed analysis is shown in Sec. 3.4.5. To align with the simulation data shown in
green dots, we introduce redshift-dependent values for p1, setting p1 = 2.00 for the Jeans
model and p1 = 0.19 for the Relaxation model. However, the Jeans model with any value
of p1 cannot reproduce the expected scatter of the CHMR observed in the simulation.
Specifically, the minimum halo mass, which corresponds to the crossing point of the three
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Figure 3.3: The comparison of the CHMR between the Jeans model at redshift z = 0
and the simulation data obtained from [160] at redshift z < 1. We set the FDM mass to
the fiducial value, mc2 = 8.0 × 10−23 eV. The red solid line shows the mean CHMR in
the Jeans model at redshift z = 0 using the mean cvir-Mh relation. The green dash-dotted
and blue dashed lines indicate the CHMRs when we consider the 2σ scatter in the cvir-Mh
relation; n = 2,−2, respectively. By setting p1 = 2.35, we successfully fit the CHMR
obtained from [160] at redshift z < 1, which shows in black dots. The CHMR shown in
[171] is plotted in a black dashed line. This figure is taken from [47].

lines, differs between the Jeans model and the simulation data. In contrast, the Relaxation
model better reproduces the scatter observed in the CHMR and aligns more closely with
the trends in the simulation data, including the location of the minimum halo mass. Note
that the gray dotted lines in both figures represent the estimated scatter of the CHMR
obtained by fitting to the simulation data, as presented in [162].

Based on these results, we conclude that the relaxation time condition, expressed in
Eqs. (3.82) and (3.83), provides a more accurate framework for determining the mass-
matching radius in describing FDM systems. Consequently, we focus on the Relaxation
model in subsequent analysis to understand its behavior. The goal is to derive a semi-
analytic expression for the CHMR within the framework of the Relaxation model.

3.4.4 Analysis in the Relaxation model
As demonstrated in Sec. 3.4.3, the Relaxation model successfully reproduces the simula-
tion data and shows a larger scatter in the CHMR compared to the Jeans model. The
Relaxation model exhibits two key characteristics: it is approximately described by a
double power law, and CHMRs with varying concentration magnitudes converge near the
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Figure 3.4: Similar to Fig. 3.3, but for the Relaxation model. By setting p1 = 0.11, we
successfully fit the CHMR obtained from [160] at redshift z < 1. This figure is taken from
[47].

minimum halo mass. In this subsection, we analyze the Relaxation model at redshift z = 0
to derive a simplified representation of the CHMR. Although the same methodology can
be extended to analyze the Relaxation model at different redshifts, our primary interest
lies in low-redshift systems, as they are crucial for comparison with observational data
such as galaxy rotation curves and gravitational lensing studies. To obtain a simplified
expression for the CHMR, we investigate the halo mass dependence of the characteristic
radius and the enclosed mass within the mass-matching radius. In the following, we first
explore the double power law behavior of the mean CHMR. Then, we analyze the scatter
in the CHMR and determine the minimum halo mass. We also study the dependence of
the CHMR on the FDM mass and derive a semi-analytic expression for the CHMR at
z = 0. Finally, we discuss the redshift dependence of the CHMR.

Mean relation

Let us recall the definition of the Relaxation model, given by Eqs. (3.82) and (3.83), which
can be rewritten as

r̃3cMNFW(< r̃c) = 7× 1013
(

mc2

10−22 eV

)−3(
tage(z)

13.8 Gyr

)
M⊙ kpc3. (3.84)

Here, we take v as the circular velocity. Considering two cases whether the radius of
interest is greater or smaller than the scale radius rs, the enclosed mass of the NFW
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Figure 3.5: The comparison of the CHMR at redshift z = 3 between the Jeans model
and the simulation data obtained from [161]. The FDM mass is set to the fiducial value,
mc2 = 8.0 × 10−23 eV. The red solid line shows the mean CHMR in the Jeans model
at redshift z = 3 using the mean cvir-Mh relation. The green dash-dotted and blue
dashed lines indicate the CHMR when we consider the 2σ scatter in the cvir-Mh relation;
n = 2,−2, respectively. We set p1 = 2.00 in this plot. Although we try different p1
values, the Jeans model cannot reproduce the estimated scatter of the CHMR obtained
from [161] at redshift z = 3, which shows in green dots. The gray dotted lines show the
estimated scatter of the CHMR presented in [162], and the black dashed line shows the
CHMR obtained by [171]. This figure is taken from [47].

profile, Eq. (2.7), can be approximated as

MNFW(< r) ≃

{
2πρsrsr

2 r ≪ rs

4πρsr
3
s

{
ln
(

r
rs

)
− 1
}

r ≫ rs
. (3.85)

It can be expected that CHMR can be divided into two cases depending on whether the
characteristic radius is larger or smaller than the scale radius, which would lead to the
double power law behavior. Since r̃c decreases monotonically with increasing halo mass
(as we verify later) and rs exhibits the opposite trend, the halo mass at the boundary of
these two cases is uniquely determined, which can be obtained from the condition r̃c = rs.
Using the relation rvir = cvirrs and Eq. (2.9), the boundary halo mass at a given redshift
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Figure 3.6: Similar to Fig. 3.5, but for the Relaxation model. By setting p1 = 0.19, the
larger scatter can be reproduced than the Jeans model and the Relaxation model captures
a similar trend including the minimum halo mass to the simulation data obtained from
[161] at redshift z = 3. This figure is taken from [47].

z can be expressed as

MB
h (z) ≃ 1× 1011 M⊙(1 + z)

3
4

(
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) 1
2
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×
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) 1
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) 1
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. (3.86)

We approximate the halo age as tage(z) ≃ t0(1 + z)−
3
2 , where t0 represents the current

age of the universe. To compute ζ(0), as defined in Eq. (2.10), we adopt Ωm0 = 0.30.
It is important to note that the right-hand side of Eq. (3.86) includes the concentration
parameter, which depends on the halo mass.

Another characteristic halo mass influencing the CHMR is four times the half-mode
mass, where the cvir-Mh relation shows a turnover. As a result, the CHMR would exhibit
a triple power law behavior, rather than the double power law discussed earlier. However,
for FDM masses mc2 ≃ 10−23 − 10−21 eV, the boundary halo mass derived in Eq. (3.86)
at z = 0 is approximately equivalent to four times the half-mode mass,

MB
h (z = 0) ≃M4hm

h . (3.87)

Thus, we do not account for the intermediate mass range between the boundary halo
mass defined in Eq. (3.86) and M4hm

h at z = 0. Instead, we focus on two scenarios: halos
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with masses either larger or smaller than the boundary mass and four times the half-
mode mass. Halos with Mh < M4hm

h are referred to as ”low-mass halos”, while those with
Mh > M4hm

h are called ”high-mass halos”.
For low-mass halos, r̃c ≳ rs, Eq. (3.84) simplifies to r̃3c ln(r̃c/rs) · 4πρsr

3
s ≃ const.,

neglecting the subdominant term. Considering the halo mass dependence of the con-
centration parameter in this regime at z = 0, Eq. (3.74), and using Eq. (2.8), we find
4πρsr

3
s ∝ M0.78

h . This gives the halo mass dependence of the characteristic radius as
r̃c ∝ M−0.26÷−0.20

h , where the uncertainty arises from the logarithmic term. Numerical
calculations yield a best-fit power law index of −0.21, which aligns with this theoretical
estimate. For high-mass halos, r̃c ≲ rs, Eq. (3.84) reduces to r̃5c · 2πρsrs = const.. Using
the halo mass dependence of the concentration parameter, Eqs. (3.73) and (3.75), we
find 2πρsrs ∝ M0.16

h , leading to r̃c ∝ M−0.032
h . However, numerical calculations suggest a

best-fit power law index of −0.06. The discrepancy likely arises because the fitting region,
Mh < 1013 M⊙/h, is insufficiently high to validate the approximation used in Eq. (3.85).
In summary, the halo mass dependence of the characteristic radius is

r̃c ∝M−0.21
h low-mass halos, (3.88)

r̃c ∝M−0.06
h high-mass halos. (3.89)

We observe that r̃c decreases monotonically as a function of halo mass, which supports our
earlier discussion regarding the boundary halo mass. Additionally, the power law index
shifts around the boundary halo mass and four times the half-mode mass, confirming the
change in behavior as described earlier.

Next, we examine the halo mass dependence of the enclosed mass within the matching
radius, rm = p1r̃c with p1 = 0.11. From the definition of the the Relaxation model
shown in Eq. (3.84), the relation MNFW(< r̃c) ∝ r̃−3

c holds. If p1 ≃ 1, it follows that
MNFW(< r̃m) ∝ r̃−3

m , as rm ≃ r̃c under this condition. Even if p1 ≃ 1 does not hold, this
relation remains valid when both r̃c and rm satisfy r̃c, rm ≫ rs or r̃c, rm ≪ rs. This is
because the ratio of the enclosed mass at the matching radius to that at the characteristic
radius can be approximated as MNFW(< rm)/MNFW(< r̃c) = ln(rm/rs)/ ln(r̃c/rs) for low-
mass halos and (rm/r̃c)

2 for high-mass halos. However, since rm ≃ rs for low-mass halos
due to the small value of p1 = 0.11, and r̃c ≃ rs for high-mass halos as discussed earlier, this
simple scaling no longer holds. To capture the actual behavior, we use numerical fitting,
which reveals that MNFW(< rm) ∝ r−2.2

m for low-mass halos and MNFW(< rm) ∝ r−1.1
m for

high-mass halos. Combining these with Eqs. (3.88) and (3.89), we derive the following
halo mass dependence for the enclosed mass,

MNFW(< rm) ∝M0.46
h low-mass halos, (3.90)

MNFW(< rm) ∝M0.07
h high-mass halos. (3.91)

This result is further validated by numerical calculations.
Since the soliton core profile is determined by imposing the mass continuity condition

at the matching radius, Msol(< rm) = MNFW(< rm), we next investigate the relation
between the enclosed soliton mass within the matching radius, Msol(< rm), and the core
mass Mc =Msol(< rc). Figure 3.7 illustrates the enclosed soliton core mass within a radius
R = r, Msol(< r), for various soliton core radii at a fixed FDM mass of mc2 = 8×10−23 eV
(rainbow-colored lines), alongside MNFW(< rm) as a function of R = rm for halos with
masses Mh = 107−1013 M⊙/h (red solid line). As shown earlier, halos with higher masses
correspond to smaller matching radii. Since rm is uniquely determined by the halo mass
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Mh, the soliton core profile is determined by a line through the point (rm,MNFW(< rm)).
Using this procedure, we obtain the soliton core mass for a given halo mass. The behavior
of the rainbow-colored lines can be approximated by the following relation,

Msol(< r) ≃

{
4
3
πρcr

3 ∝ m6M4
c (r < 0.5rc)

Ms ∝Mc (r > 3.5rc)
, (3.92)

where the total core mass denoted by Ms can be calculated using Eq. (3.55) with the upper
limit of the integration extended to infinity. The parameter dependence in Eq. (3.92) is
determined by using Eqs. (3.54) and (3.55). Since the density profile of the soliton core
drops rapidly, the enclosed mass of the soliton core within a radius exceeding 3.5 times
the core radius closely approximates Ms.

To understand the halo mass dependence of the core mass, we divide it into two cases
based on whether the matching radius rm exceeds 3.5rc or not. The transition halo mass
between these two cases, where the red solid line intersects the black dotted line in Fig. 3.7,
closely aligns with the boundary mass distinguishing low-mass halos from high-mass halos,
where the power law index of the red solid line changes. Thus, no further subdivisions are
necessary. For high-mass halos, where rm > 3.5rc, the relation MNFW(< rm) = Ms ∝ Mc
holds, leading to the halo mass dependence Mc ∝ M0.07

h . For low-mass halos, precise
estimation is more challenging because the matching radius lies between 0.5rc and 3.5rc.
However, we can approximate the halo mass dependence of the core mass by using the
upper relation in Eq. (3.92), Eq. (3.90), and the relation rm ∝ M−0.21

h derived from
Eq. (3.88). This analytic approach yields Mc ∝ M0.27

h . Numerical fitting results in
Mc ∝M0.32

h , showing reasonable agreement with the analytic estimation.
In summary, we find that the CHMR in FDM halos obtained from the Relaxation

model approximately follows a double power law behavior,

Mc ∝M0.32
h low-mass halos, (3.93)

Mc ∝M0.07
h high-mass halos. (3.94)

The transition in the CHMR corresponds to a halo mass four times the half-mode mass
M4hm

h , where the cvir-Mh relation shows a turnover. While the power law index of the
CHMR also shifts near the boundary mass given in Eq. (3.86), this transition is sub-
tler compared to the change around M4hm

h . Furthermore, as previously discussed, the
boundary mass aligns closely with M4hm

h at redshift z = 0.
The CHMR presented in [171] shows that the power-law index derived for low-mass

halos at redshift z = 0 aligns well with the predictions of the Relaxation model. However,
significant deviations are observed between the Relaxation model and their findings in
the case of high-mass halos. The double power-law behavior is highlighted in [176], albeit
under a different framework. They investigate CHMR by solving the linearized SP equa-
tion with the NFW potential as the background, concluding that the power-law index
is approximately 1/3 for low-mass halos but decreases for high-mass halos, i.e., a trend
consistent with the Relaxation model. Further data on high-mass halos may allow us to
distinguish the Relaxation model from the model proposed in [176].

Scatter

We next account for the scatter in the cvir-Mh relation and show its impact on the scatter
in the CHMR. As a reminder, we assume the scatter in the cvir-Mh relation to be 0.16
dex at the 1σ level.
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Figure 3.7: The enclosed masses within a radius R = r or rm are shown, from which the
soliton core mass is determined using the mass-matching condition. The red solid line
shows the enclosed mass of the NFW profile at the matching radius rm with halo mass
range Mh = 107 − 1013 M⊙/h. The rainbow-colored lines indicate the enclosed masses
of the soliton cores as a function of radius r for different core radii with the fixed FDM
mass, mc2 = 8× 10−23 eV. For a given halo mass Mh, we first obtain (rm,MMFW(< rm)),
and then determine the core radius and mass such that the corresponding soliton core
passes through this point. The red dotted line shows the power law relation for the low-
mass halos, MMFW(< rm) ∝ r−2.2

m , and the red dashed line shows for the high-mass halos,
MMFW(< rm) ∝ r−1.1

m . The relation between the core radius rc and the core mass Mc is
shown in the black dashed line. The black dotted line represents the relation between the
3.5rc and the total core mass Ms. This figure is taken from [47].

Since only the magnitude of the concentration parameter is modified, the power law
index of the cvir-Mh relation remains unchanged. However, the dependence of f(cvir)
on halo mass is slightly changed, leading to the different dependence of the relevant
combinations of the NFW parameters on the halo mass; 4πρsr

3
s |lowMh ∝ M0.78+0.025n

h and
2πρsrs|highMh ∝M0.16−0.01n

h . In the first combination, the power law index increases as the
concentration parameter becomes larger, while the second combination shows an opposite
trend. These variations in halo mass dependence lead to changes in the power law indices
of the CHMR. The method for determining the power law index in each case follows the
same procedure as the mean case. We finally obtain the following relation through fitting,

Mc ∝M0.32+0.05n
h low-mass halos (3.95)

Mc ∝M0.07−0.01n
h high-mass halos. (3.96)

As anticipated, the dependence of the power law index on the scatter shows the opposite



46 CHAPTER 3. FUZZY DARK MATTER

trends for low-mass and high-mass halos.
In Fig. 3.4, we observe that the three lines, each corresponding to different magnitudes

of the concentration parameter, intersect at nearly the same halo mass, Mh ≃ 107.5 M⊙/h.
This halo mass represents the minimum halo mass, as discussed below. We define the
minimum halo mass Mmin

h as the mass where the matching radius rm equals the virial
radius rvir. For halos with rm > rvir, we cannot use the halo mass definition given in
Eq. (2.9), and thus such halos do not exist. Using the condition rm = rvir and Eq. (3.84),
we can analytically derive the minimum halo mass for a given redshift z as

Mmin
h (z) ≃ 4× 107 M⊙(1 + z)

3
4

(
ζ(z)

ζ(0)

) 1
2
(

mc2

10−22 eV

)− 3
2 ( p1

0.11

)1.8
×
(

1

p0.61

f(cvir)

f(c̃vir)

) 1
2
(

ρm0

40.8 M⊙ kpc−3

) 1
2
(

t0
13.8 Gyr

) 1
2

. (3.97)

Here, we define c̃vir = p−1
1 cvir. The scatter in the minimum halo mass due to variations

in the concentration parameter is relatively small because the factor f(cvir)/f(c̃vir) does
not change significantly. The core mass of the minimum halo is nearly identical to the
halo mass by definition, and more precisely, Mmin

c ≃ 0.34Mmin
h (n = 0). This explains why

the three lines in Fig. 3.4 intersect around the minimum halo mass for FDM halos. We
verify that the mass at the intersection in the numerical calculation closely matches the
analytically estimated minimum halo mass, differing only by a factor of O(1) even when
considering different redshifts and FDM masses. It is important to note that although we
plot the CHMR below the minimum halo mass, those small halos may not be physically
meaningful. On the other hand, there are no upper limits to the core and halo mass, as
our model does not impose a lower limit on the core radius.

We briefly discuss the scatter in the boundary halo mass given by Eq. (3.86). We find
that the boundary mass varies approximately 5 times larger or smaller than the mean case
when considering the 2/-2 σ scatter. However, the mass at which the power law index in
the CHMR changes does not exhibit significant variation. This leads us to conclude that
the variation in the power law index around the boundary mass is less pronounced than
the variation around the four times the half-mode mass M4hm

h , where the cvir-Mh relation
shows a turnover.

Combining all the results up to this point, we can express the CHMR at redshift z = 0
in a simpler semi-analytic way as,

Mc =

Mmin
c

(
Mh

Mmin
h

)0.32+0.05n

(Mmin
h < Mh < M4hm

h )

M4hm
c,n

(
Mh

M4hm
h

)0.07−0.01n

(Mh > M4hm
h )

, (3.98)

where we define M4hm
c,n to ensure core mass continuity at Mh = M4hm

h for a given n. As
shown in Fig. 3.8, the semi-analytic form given in Eq. (3.98) closely matches the numerical
results of the Relaxation model, with discrepancies on the order of O(1).

FDM mass

Another important aspect of the CHMR is its dependence on the FDM mass, which is
constrained by various observational data, including rotation curve measurements and
gravitational lensing events.
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Figure 3.8: The CHMR with the Relaxation model and its semi-analytic expression at
redshift z = 0. The red solid, green dash-dotted, and blue dashed lines are the same as
Fig. 3.4. The black big point represents the minimum halo mass and the brown small
points indicate the four times the half-mode mass. We use the semi-analytic expressions
shown in Eq. (3.98) to plot the black dashed and dotted lines. This figure is taken from
[47].
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The FDM mass dependence in the Relaxation model can be interpreted in the same
way as the previous analysis. Since we already know the FDM mass dependence for both
the minimum mass and the half-mode mass, where the CHMR exhibits a transition in its
double power-law behavior, the primary remaining point of discussion is how the power
law index itself changes with the FDM mass. We rely on fitting to get the exact value for
the power law index since the combinations of the NFW parameters such as the enclosed
mass include the logarithmic dependence on the halo mass. Interestingly, we observe that
the power law index of the CHMR is almost independent of the mass of FDM within the
relevant range.

The minimum halo and core masses approximately follow the scaling relation Mmin ∝
m−3/2, as shown in Eq. (3.97), while the half-mode mass scales as M4hm

h ∝ m−4/3, as can
be seen in Eq. (3.49). Additionally, the core mass corresponding to the halo mass of four
times the half-mode mass scales as M4hm

c,n ∝ m−(8.68−0.05n)/6, which can be derived from
the upper relation in Eq. (3.98) by setting Mh = M4hm

h . These scaling relations align
closely with those predicted by the SP equation: Mh ∝ m−3/2 and Mc ∝ m−3/2, which are
obtained by setting β = 1 in Eq. (3.52). This consistency is illustrated in Fig. 3.9, where
the scaling relation is compared to the numerical results of the Relaxation model. The red
solid line represents the CHMR with the fiducial FDM mass, while the green dash-dotted
and blue dashed lines correspond to the cases with ten times larger and smaller FDM
masses, respectively. The black dashed and dotted lines represent the scaling relation
applied to the red solid line. From this result, we can conclude that the Relaxation model
successfully captures the scaling features of the SP equation.

To be more precise, we observe slight deviations between the scaling relation of the SP
equation and the Relaxation model. These deviations arise from the cvir-Mh relation in
FDM halos, given by Eq. (3.71). Both factors on the right-hand side of Eq. (3.71), namely
cvir(Mh, z;CDM) and F (Mh/M

hm
h ), contribute to breaking the scaling relation. We can

check these deviations as follows. Regarding the first factor, since the concentration
parameter is not constant across all halo masses due to the scale-variant power spectrum
and the concentration parameter remains unchanged under scaling while the halo mass
changes, the scaling relation is broken. Even though the primordial power spectrum of
the density perturbation is scale-invariant, it becomes scale-variant due to the evolution
of perturbations at the super-horizon scale and during the radiation-dominant era, which
are described by the (CDM) transfer function. Regarding the second factor, the half-mode
mass does not follow the scaling relation due to the violation of the scaling law in the FDM
transfer function, which is modified by TF(k) compared to the CDM transfer function as
shown in Eq. (3.46). This modification incorporates a factor of (mc2/10−22 eV)1/18, which
also originates from the evolution of perturbations at the super-horizon scale during the
radiation-dominated era, and is responsible for breaking the scaling relation. Therefore,
the deviations between the Relaxation model and the scaling relation in the SP equation
arise from these two factors. It is worth noting that in the semi-analytic form of the
Relaxation model, Eq. (3.98), the contribution of the first factor is found to be negligible
within the range of FDM masses of interest. Otherwise, the power law indices of the
CHMR would be expected to depend on the FDM mass.

The previous simulations are carried out with nearly the same FDM mass around our
fiducial value, along with the CDM initial conditions, which only incorporate the first
factor. Therefore, it is crucial to perform simulations with varying FDM masses and
with the FDM initial condition. These simulations would allow us to test the FDM mass
dependence of the CHMR and the validity of the Relaxation model.
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Figure 3.9: The dependence of the Relaxation model on the FDM mass and the compar-
ison with the scaling relation of the SP equation. The Relaxation models with different
FDM masses are plotted in the blue dashed, red solid, and green dash-dotted lines. The
concentration parameter is taken to be the mean value. The black dotted and dashed
lines are plotted by applying the scaling relation M ∝ m−3/2 to the red solid line. This
figure is taken from [47].

Redshift

Up to this point, we have primarily focused on the CHMR at redshift z = 0. Here, we
briefly explore the redshift dependence of the Relaxation model.

In the Relaxation model, the redshift dependence arises from the concentration pa-
rameter, the halo age, and the parameter p1. The concentration parameter for low-mass
halos follows the scaling relation cvir ∝ (1 + z)−1, and the power law index of the cvir-Mh
relation remains unchanged. However, the redshift dependence is not monotonic for high-
mass halos, as these halos are rare at high redshifts. Nevertheless, we can understand
the behavior in the same way as the previous analyses. We present the outcomes of the
Relaxation model, without explaining the details of the analysis.

First, we fix p1 = 0.11 for simplicity. According to [171], the redshift dependence
of the CHMR can be absorbed by plotting it in the

√
ζ(z)/ζ(0)Mh-Mc/

√
1 + z plane.

However, when we plot the results from the Relaxation model in this plane, we still observe
redshift dependence (with Mc/

√
1 + z being smaller at higher redshifts). Additionally, the

Relaxation model can explain the simulation data from [161] when p1 = 0.19 (not 0.11) at
z = 3. Therefore, we allow p1 to depend on redshift. Since a larger core mass is required
at higher redshifts to match the three lines, p1 must increase as redshift increases. We
find that we can effectively absorb the redshift dependence of the CHMR, as shown in
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Fig. 3.10, where we set p1 = 0.11 at z = 0, 0.15 at z = 1, and 0.19 at z = 3. The resulting
power law index of the CHMR in the

√
ζ(z)/ζ(0)Mh-Mc/

√
1 + z plane for the low-mass

halos is approximately 0.30, which is in reasonable agreement with the relation found in
[171].

The empirical and practical reason for requiring a larger p1 at higher redshifts is to
compensate for the smaller core mass associated with a shorter halo age tage. As mentioned
earlier, the Relaxation model incorporates redshift dependence in the concentration cvir,
halo age tage, and p1. When tage(z) is fixed to the current age of the universe tage(0),
we find that the CHMRs at different redshifts coincide in the

√
ζ(z)/ζ(0)Mh-Mc/

√
1 + z

plane. However, when the redshift dependence of tage is taken into account, the core mass
becomes smaller at higher redshifts. To compensate for this, p1 must be increased to
reproduce the larger core mass as the redshift becomes larger.1

We can derive the semi-analytic expression at redshift z = 3 in the same manner,

Mc =

 M̃min
c

(
Mh

M̃min
h

)0.30+0.04n

(Mmin
h < Mh < M4hm

h )

M4hm
c,n

(
Mh

M4hm
h

)0.22
(Mh > M4hm

h ).
(3.99)

To improve the fit to the numerical calculations, we introduce M̃min
h = Mmin

h /2.5. The
minimum halo mass is estimated using the mean concentration (n = 0), and we find
that M̃min

c ≃ 0.45M̃min
h . As with the z = 0 case, we define M4hm

c,n to ensure continuity
of the expression at Mh = M4hm

h for a given n. The difference in the power law indices
between the expressions at redshift z = 0, i.e., Eq. (3.98), and at redshift z = 3, i.e.,
Eq. (3.99), arises from the different halo mass dependence of cvir, f(cvir), and the varying
value of p1. While the power law index remains nearly the same for low-mass halos, it
diverges for high-mass halos. This is due to the substantial difference in the halo mass
dependence of the concentration parameter; the upturn in the cvir-Mh relation at higher
redshifts, as described in [55]. Interestingly, the power law index of high-mass halos is
found to be independent of n. Note that the scatter of the core mass for high-mass halos
is encapsulated in M4hm

c,n . In Fig. 3.11, we compare the semi-analytic expression with the
numerical results at redshift z = 3, showing good agreement between them. We use the
semi-analytic expression, Eq. (3.99), in Sec. 3.4.5 to examine the scatter of the CHMR.

3.4.5 Comparison of the degree of scatter
In this subsection, we assess how variations in the cvir-Mh relation influence the scatter
of the CHMR. Revisiting Fig. 3.6, the Relaxation model shows a significant reduction
in scatter around the minimum halo mass. While [176] also show a similar trend by
considering the scatter in the cvir-Mh relation, it seems that the variation in scatter with
respect to halo mass is not sufficient to match the simulation data.

To quantitatively evaluate the scatter of the CHMR in the Relaxation model, we
analyze the distribution of core masses for a given halo mass. Here, we consider the

1This behavior raises questions about the validity of the cvir-Mh relation in FDM halos, particularly
below the half-mode mass, where we apply the suppression model from [167]. A notable issue with this
model is that it predicts cvir < 1 for low-mass halos at high redshift, which is physically unrealistic.
In reality, these halos likely have a concentration cvir > 1, suggesting that the concentration parameter
may be underestimated at higher redshifts. Since a lower concentration leads to a smaller core mass,
adjusting p1 to larger values may compensate for this discrepancy. To gain a clearer understanding of the
redshift dependence of p1, further investigation is needed into the cvir-Mh relation in FDM halos through
simulations or semi-analytic approaches.
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Figure 3.10: The CHMR in the Relaxation model with redshift-dependent p1. We show
the results of z = 0 (blue dashed), z = 1 (red solid), and z = 3 (green dash-dotted). We
set p1 = 0.11 at z = 0, 0.15 at z = 1, and 0.19 at z = 3 to absorb the redshift dependence.
This figure is taken from [47].

CHMR at redshift z = 3 and use the expression given in Eq. (3.99) to compare the
simulation results from [161]. In the Relaxation model, the distribution of the scatter
can be derived as follows. Since the concentration parameter is known to follow a log-
normal distribution with a constant scatter of approximately 0.16 dex, the probability
distribution of the concentration can be expressed as

dP =
d log10 cvir√
2πσ2

log10 cvir

exp
(
−(log10 cvir − log10 c

mean
vir )2

2σ2
log10 cvir

)
, (3.100)

where σlog10 cvir = 0.16 is the variance of the concentration parameter. Since we use the
relation cvir = cmean

vir × 100.16n, we can express as

n = σ−1
log10 cvir

log10

(
cvir

cmean
vir

)
. (3.101)

Using the semi-analytic expressions in Eqs. (3.99), (3.100), and (3.101), we can show that
the core mass also follows a log-normal distribution,

dP =
d log10Mc√
2πσ2

log10 Mc

exp
(
−(log10Mc − log10M

mean
c )2

2σ2
log10 Mc

)
, (3.102)
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Figure 3.11: The same as Fig. 3.8, but in the case of the redshift z = 3. The semi-
analytic expression is given by Eq. (3.99), plotted by the black dashed and dotted lines.
Here we show the minimum mass denoted by M̃min

h . This figure is taken from [47].

where the core mass calculated with the mean concentration is denoted by Mmean
c , and

the scatter of the core mass can be expressed as

σlog10 Mc =

 0.04 log10

(
Mh

M̃min
h

)
(Mmin

h < Mh < M4hm
h )

0.04 log10

(
M4hm

h
M̃min

h

)
(Mh > M4hm

h ).
(3.103)

From Eq. (3.103), the degree of the scatter of the core mass increases as halo mass becomes
larger for low-mass halos and remains constant for high-mass halos. It is important to
note that, due to the monotonic dependence of the cvir-Mh relation on the CHMR, the
core mass corresponding to an nσ variance of the concentration parameter directly reflects
the same variance for the core mass, as shown in Figs. 3.3 to 3.6. Note that the degree
of scatter at redshift z = 0 can also be estimated similarly by using Eq. (3.98) instead of
Eq. (3.99).

We also examine the core mass distribution derived analytically in [176] using their
publicly available code 2. For a given halo mass, we generate 100,000 realizations of the
concentration parameter, assuming a log-normal distribution. The mean concentration is
determined by the cvir-Mh relation from [55] with the suppression factor from [167], and
the scatter is set to 0.16 dex, consistent with the Relaxation model. We compute the core
masses by using these concentration parameters, resulting in 100,000 realizations of the
core mass for each halo mass. The core mass distributions for ten different halo masses are
shown in Fig. 3.12. These distributions are well-fitted by log-normal functions, consistent

2https://github.com/ataruya/FDM

https://github.com/ataruya/FDM
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Figure 3.12: The probability distribution of the core mass with ten different halo masses
at redshift z = 3 obtained from the analytic study [176] using their public code. For a
given halo mass, we compute the 100,000 realizations of the core mass by considering the
log-normal scatter of the concentration parameter. The mean concentration is obtained
by the cvir-Mh relation [55] with the suppression factor presented in [167], and the variance
of the concentration parameter is set to 0.16 dex. The red lines show the result of the
log-normal fitting to the core mass distribution. This figure is taken from [47].

with the prediction of the Relaxation model. Additionally, we analyze the core mass
distribution in the simulation data from [161]. The data is divided into ten logarithmic
bins based on halo mass, and the histograms of core mass are plotted in Fig. 3.13. The
red lines represent log-normal fits, indicating that the core mass distributions are in good
agreement with the log-normal distribution.

Having confirmed that the core mass distributions predicted by both models and
observed in simulation data follow a log-normal distribution, we compare the 1σ scatter
of the core mass. The results are presented in Fig. 3.14. As mentioned earlier, the scatter
in the Relaxation model expressed in Eq. (3.103) increases with halo mass for low-mass
halos and becomes constant for high-mass halos. While the model by [176] exhibits a
similar trend to the Relaxation model, the amplitude of the variance is generally smaller,
except for halo masses below 108 M⊙/h. We employ two approaches to estimate the
degree of scatter of the core mass for a given halo mass in the simulation data. The first
approach is by fitting the core mass distribution with a log-normal function to obtain the
scatter, represented by red square dots. In the second approach, we evaluate the scatter
using quantiles, following the method presented in [176]. Specifically, we identify two
quantiles, where 16% of the data lies below one and above the other, and take half of
the difference of the two quantiles as 1σ. The results of the second method are shown
in orange circle dots. Since the core mass distribution aligns well with the log-normal
function, both methods yield nearly identical scatter estimates. In Fig. 3.14, we observe
that neither the Relaxation model nor the model presented by [176], which incorporates
the scatter in the cvir-Mh relation, fully explain the scatter of the CHMR observed in
the simulation. While the scatter in the simulation is about 1.5 times larger than that
predicted by the Relaxation model, the dependence of the scatter on halo mass shows good
agreement between them. These findings suggest that the scatter in core mass at a given
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Figure 3.13: The probability distribution of the core mass with ten different halo mass
bins obtained from the largest FDM simulation at redshift z = 3 [161]. The red lines
show the result of the log-normal fitting. This figure is taken from [47].

halo mass may partially stem from the scatter in halo concentration parameter, which
itself likely originates from the assembly history of individual halos. Indeed, additional
factors such as the shape of halos may also contribute to the log-normal distribution of
core masses and the larger scatter observed in simulations [179]. Since the only degree
of freedom for scatter in the current Relaxation model is the concentration parameter,
extending the model to account for effects such as non-spherical halos would improve its
prediction, which we leave for future studies.

3.4.6 Total density profile
While the CHMR might be further investigated in future studies, we obtain the analytic
expression for the CHMR at redshift z = 0, Eq. (3.98). The total density profile, which
is the main goal of this section, can be expressed as

ρ(r) =

{
ρsol(r) (r < rc/2)

max[ρsol(r), ρNFW(r)] (r > rc/2)
. (3.104)

In Fig. 3.15, we present the density profile of the FDM halo with a halo mass of Mh =
1011 M⊙ at redshift z = 0, compared with the CDM density profile. The profiles are shown
for different FDM particle masses. As the FDM particle mass increases, the core radius
decreases, and the central density becomes higher. The FDM density profile surpasses
the standard CDM profile near the core radius due to the presence of the soliton core,
which affects the strong gravitational signal as shown in Chap. 7.

3.5 Subhalo distribution
Due to the wave nature of FDM, the linear power spectrum is suppressed, leading to a
reduced abundance of subhalos compared to the CDM case. This suppression takes place
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Figure 3.14: The degree of 1σ scatters of the core mass at redshift z = 3. The red square
and orange circle dots represent scatters obtained from the simulation results conducted
by [161], where the former is estimated by fitting the core mass distribution with the log-
normal function, and the latter is estimated by computing quantiles of the 68% around
the median core mass. The blue solid line indicates the estimated scatter of the core mass
due to the scatter of the concentration parameter using the Relaxation model, Eq. (3.103).
The green dots with the cross symbol represent the scatter of the core mass estimated by
[176]. This figure is taken from [47].
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Figure 3.15: The CDM and the FDM density profiles with different FDM masses of halos
with mass Mh = 1011 M⊙ at redshift z = 0. The black dashed line represents the NFW
profile in the CDM halo. The blue, red, and green solid and dotted lines show the total
density profiles of the FDM halo and their soliton core profiles with m = 5× 10−23eV/c2,
1 × 10−22eV/c2, and 5 × 10−22eV/c2, respectively. We use the cvir-Mh relation to obtain
the concentration parameter of the CDM halo and multiply the suppression function to
obtain that of the FDM halos. This figure is taken from [49].

below the half-mode mass and the subhalo mass function can be expressed as [159, 168],

dNsh

dMsh

∣∣∣∣
FDM

=
dNsh

dMsh

∣∣∣∣
CDM

F

(
Msh

Mhm
h

)
, (3.105)

where the suppression function F is the same as Eq. (3.71), but now the parameters
are (a, b, c) = (0.36,−1.1,−2.2) [168]. The first component in the right-hand side of
Eq. (3.105) denotes the CDM subhalo mass functions, i.e., Eq. (2.16) for instance. The
projected subhalo mass function can be expressed as

d2Nsh

dMshdS

∣∣∣∣
FDM

=
d2Nsh

dMshdS

∣∣∣∣
CDM

F

(
Msh

Mhm
h

)
, (3.106)

with the same values of (a, b, c). Again the first component in the right-hand side of
Eq. (3.106) denotes the projected CDM subhalo mass functions defined by Eq. (2.21).
In Fig. 3.16, we present the evolved projected subhalo mass function for both CDM and
FDM models. As the FDM mass decreases, the turnover shifts to a higher subhalo mass,
which is attributed to the larger de Broglie wavelength.
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Figure 3.16: The evolved projected subhalo mass function in the case of CDM and FDM
models with different FDM masses. Host halo mass is set to Mhh = 1015 M⊙ and its
density profile is assumed to follow the NFW profile. We use the concentration-halo mass
relation obtained by [55]. The position of the subhalos is set to dsh = 100 kpc and we use
the relation dS = 2πdshddsh. The black solid line indicates the CDM case calculated by
[75] with their provided code. The blue, red, and green solid lines are the FDM cases with
FDM masses m = 1×10−23 eV/c2, 1×10−22 eV/c2, and 1×10−21 eV/c2, respectively. The
suppression of the subhalo mass function below the half-mode masses, which are shown in
the vertical dashed lines, is calculated by the function F with (a, b, c) = (0.36,−1.1,−2.2).
This figure is taken from [49].

3.6 Sub-galactic matter power spectrum
In Sec. 3.2, the linear matter power spectrum is discussed. Here, we show the sub-galactic
matter power spectrum, where granular structures are the primary contributors, based on
the analytical study presented in [164]. Assuming that granular structures are uniformly
and randomly distributed within spherical halos and have a constant size determined by
the halo velocity dispersion,

v =

√
3GMtot

2rvir
, (3.107)

where the total mass Mtot refers to the sum of the halo and stellar masses, and rvir is the
virial radius of the halo. Using Eq. (3.62), the fluctuation around the spatially averaged
NFW profile can be written as

δ(r) =
ρ(r)− ρNFW(r)

ρNFW(r)
= Vc

∫
Vϵ

d3r′, u(r − r′)n(r′)− 1. (3.108)
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The Fourier transform of the density fluctuation can be expressed as,

δk =

∫
Vϵ

d3r δ(r)e−ik·r

= Vc

∫
Vϵ

d3r′ n(r′)e−ik·r′
∫
Vϵ

d3r′′ u(r′′)e−ik·r′′

= Vcũk

∫
Vϵ

d3r′n(r′)e−ik·r′ (3.109)

where k is the three-dimensional wavenumber of the fluctuation. Note that a discrete
Fourier transform is applied here since the radius of concern is finite, i.e., the size of
the halo. Since the density fluctuation with the wavenumber k = 0 is not important, the
constant term in Eq. (3.108) is ignored. In the second equality, the variable transformation
r′′ = r − r′ is performed. The Fourier transform of the normalized mass density profile
is denoted by ũk.

The definition of the three-dimensional power spectrum is

⟨δkδk′⟩ = Vϵ δ
(3)
k+k′,0 P (k). (3.110)

The left hand side of Eq. (3.110) can be further calculated by substituting Eq. (3.109) as,

⟨δkδk′⟩ = V 2
c ũkũk′

∫
Vϵ

d3r

∫
Vϵ

d3r′ e−ik·re−ik′·r′ ⟨n(r)n(r′)⟩

= Vcũkũk′

∫
Vϵ

d3r e−i(k+k′)·r

= VcVϵ δ
(3)
k+k′,0 |ũk|2. (3.111)

In the second equality, the correlation between the number density of the granular struc-
tures is assumed to be ignored, i.e., ⟨n(r)n(r′)⟩ = δ(3)(r − r′)/Vc. Therefore, the sub-
galactic matter power spectrum is expressed as

P (k) = Vc|ũk|2, (3.112)

where the sphericity of the normalized mass density is assumed. When the normalized
mass function u is given by the Gaussian, Eq. (3.60), it can be further expressed as

P (k) = Vc exp
(
−λ

2
dB
4
k2
)
. (3.113)

The sub-galactic matter power spectrum resembles white noise on large angular scales
but exhibits exponential suppression on small scales below the de Broglie wavelength.

A similar analysis can be applied to the projected density field. The sub-galactic
matter power spectrum at a location x = |x| in the projected density is given by

P (K) =
Vc

rNFW(x)
|ũK |2, (3.114)

where K = |K| is the two-dimensional wavenumber, and rNFW(x) is the effective radius
of the NFW profile, defined as

rNFW(x) =

{∫
dz ρNFW(r)

}2∫
dz ρ2NFW(r)

, (3.115)
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with the integration along the line of sight performed at the point x. The two-dimensional
normalized mass function ũK is related to the three-dimensional counterpart, as ũK =
ũk|kz=0. By considering the Gaussian mass density profile, the projected sub-galactic
matter power spectrum is further expressed as

P (K) =
Vc

rNFW(x)
exp

(
−λ

2
dB
4
K2

)
. (3.116)

When considering the smooth baryon distribution described by the Hernquist profile,
Eq. (2.22), in addition to the FDM density profile, the amplitude of the matter power
spectrum is suppressed,

P (K) =

(
ΣNFW(x)

ΣNFW(x) + ΣHern(x)

)2
Vc

rNFW(x)
exp

(
−λ

2
dB
4
K2

)
, (3.117)

where ΣHern is the projected density of the Hernquist profile. This is because the smooth
baryon profiles reduce the density contrast of fluctuations. It is important to note that any
modification of the FDM density profile due to the presence of the baryonic component
is ignored in this representation.

Figure 3.17 illustrates the projected sub-galactic matter power spectrum for differ-
ent FDM masses. The amplitude, which is proportional to the volume of the granular
structures, exhibits a strong dependence on the FDM mass, scaling as Vc ∝ λ3dB ∝ m−3.
Considering that each granular structure contributes a fluctuation of O(1), the overall
fluctuation is reduced and estimated to be O(1/

√
N), where N is the number of granular

structures along the line of sight. As the FDM mass increases or the halo size becomes
larger, the number of granular structures increases, leading to a smaller power spectrum.
Additionally, damping occurs at scales corresponding to the size of granular structures,
K ∝ λ−1

dB ∝ m.

3.7 Previous constraints on the FDM mass
The FDM mass is constrained by various observations (see [156] for a recent review).
The suppression of small-scale structures affects the integrated Sachs-Wolfe effect, where
photons from the cosmic microwave background (CMB) are gravitationally redshifted by
intervening matter between the last scattering surface and the Earth, influencing the
CMB anisotropies and pattern of power spectra. By comparing the CMB power spectra
obtained by the Wilkinson Microwave Anisotropy Probe (WMAP), Planck satellite, Ata-
cama Cosmology Telescope, and South Pole Telescope, the FDM mass is excluded in the
range between m = 10−33 − 10−24 eV at the 95% confidence interval (CI) [180, 181]. The
Lyman-alpha forests, a series of absorption lines corresponding to the rest frame wave-
length of 121.6 nm, formed when light excites neutral hydrogen left in the intergalactic
medium (IGM) at various redshifts after the reionization, provide a crucial means to probe
small-scale structures. The suppressed linear matter power spectrum in the FDM model
results in the suppressed structure of the IGM, which in turn affects the Lyman-α flux
power spectrum. From the Baryon Oscillation Spectroscopic Survey (BOSS) in the Sloan
Digital Sky Survey (SDSS), XQ-100, and HIRES/MIKE, the FDM mass m ≲ 2×10−20 eV
is excluded at the 95% CI, which is the most stringent constraint [182, 183, 184, 185].
The 21 cm line is a spectral feature produced by the transition between parallel and an-
tiparallel spin states of the proton and electron in a neutral hydrogen atom. Since the
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Figure 3.17: The projected sub-galactic matter power spectrum in an FDM halo due to
the presence of the granular structures. The three lines represent the results for different
FDM masses: m = 1 × 10−23 eV (green dash-dotted line), m = 1 × 10−22 eV (red solid
line), and m = 1 × 10−21 eV (blue dashed line). The halo and baryon profiles are given
by the NFW and Hernquist profile with total masses being set to Mh = 1013 M⊙/h
and Ms = 1011 M⊙/h, respectively. We use the cvir-Mh relation obtained by [55] and the
relation between the effective radius and the total baryon mass shown in Eq. (2.24). We set
the position x by one-hundredth of the halo virial radius, corresponding to x ≃ 4.4 kpc/h.
This figure is adapted from [164].

observations of the 21 cm line trace the neutral hydrogen before and around the epoch
of the reionization, it is also useful to probe the abundance of small-scale structures.
From the first detection of such an absorption signal at redshift z ≃ 17 in the Experi-
ment to Detect the Global Epoch of Reionization Signature (EDGES) survey, the FDM
mass of m ≲ 8 × 10−21 eV is constrained [186, 187]. The upcoming power spectrum
measurements from the Hydrogen Epoch of Reionization Array (HERA) also constrain
the FDM mass around m ≃ 10−21 eV [188]. While these constraints stem from large-
scale structure observations, small-scale studies also provide implications for the FDM
mass. By estimating the low-mass end of halos through strong gravitational lensing of
quasars and the perturbations in the motion of stars in stellar streams within the Milky
Way, the FDM mass of m < 2.1 × 10−21 eV [189] or m < 5.2 × 10−21 eV [190] has been
constrained, with the difference comes from assumed subhalo mass function. In [191],
the stellar kinematics of eight dwarf spheroidal galaxies (dSphs) are analyzed, concluding
that the FDM mass of m ≃ 10−22 eV is consistent with observations. For two specific
dSphs, Fornax and Sculptor, which exhibit the core density profiles, the FDM mass is
constrained to m ≲ 4 × 10−23 eV [192]. However, combining data of dSphs and ultra-
faint dwarfs (UFDs) places a stronger lower bound on the FDM mass, constraining it to
m ≳ 6 × 10−22 eV [193]. This is further supported by an analysis of the density profiles
of 18 Galactic UFD galaxies, which suggests an even tighter constraint of m ≳ 10−21 eV
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Figure 3.18: The summary of previous constraints on the FDM mass, assuming that FDM
constitutes the entirety of the dark matter. The colored regions are excluded by obser-
vations. The constraints come from the CMB anisotropy and the large-scale structure
[180, 181] Lyman-α forest [182, 183, 184, 185], Eridanus II [198], black hole superradiance
[199, 200], 21 cm absorption line [186, 187], quasar strong lensing and stellar streams
using the subhalo mass function (SHMF) [189], dynamical friction [196], heating of the
Milky Way discs [197], and dSphs and UFDs [191, 192, 193, 194]. This figure is taken
from [156].

[194]. Additionally, the constraints have been obtained from the rotation curve of the
Milky Way [195], the effects of dynamical friction [196], the heating of Milky Way disc
stars by granular structures [197], the heating of old star clusters in Eridanus II due to
the soliton core oscillation [198], and black hole superradiance [199, 200]. Note that black
hole superradiance is a phenomenon where rotating black holes lose energy and angular
momentum by amplifying waves with a Compton wavelength comparable to or larger
than the black hole size, thereby constraining the FDM mass based on its efficiency.

Combining all these constraints, no single FDM mass is strongly favored, implying
that FDM alone might not fully account for the dark matter component in the universe.
However, since some of these constraints may be affected by uncertainties in baryonic
physics, further detailed studies are needed. The constraints on the FDM mass listed
above are summarized in Fig. 3.18.
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Chapter 4

Strong gravitational lensing

Before the advent of general relativity (GR), Newtonian theory was the standard frame-
work for explaining motion in gravitational fields. According to Newtonian mechanics,
acceleration a = F /m is independent of mass. Thus, if light behaves as a particle, it
should also be influenced by a gravitational field. Using Newtonian gravity, the deflection
angle of light by a spherical mass M is calculated as α̂ = 2GM/c2ξ, where ξ is the impact
parameter. In 1915, Albert Einstein formulated the GR and recalculated the deflection
of light, revealing that the Newtonian result underestimated the angle by a factor of two.
This discrepancy arises from the curvature in the presence of mass predicted by the GR,
which increases the deflection angle. According to the GR, the deflection angle is given
by

α̂ =
4GM

c2ξ
= 1”.75

(
M

M⊙

)(
ξ

R⊙

)−1

. (4.1)

This theoretical prediction, first validated by Eddington’s observations during a solar
eclipse in 1919, has been confirmed by numerous subsequent observations. These theoret-
ical and observational advancements laid the foundation for using gravitational lensing to
study the mass distribution in the universe.

In this chapter, we specifically focus on strong gravitational lensing, which produces
multiple images. These images are observed near the characteristic lines called critical
curves, where magnification becomes mathematically infinity. The Einstein ring is an
example of the critical curve, a ring-shaped image that forms when the source, lens, and
observer are aligned along a straight line. The size of the Einstein ring, i.e., the Einstein
radius, varies depending on the mass of the lensing object. When the lensing object has
a stellar mass, the Einstein radius is on the order of micro-arcseconds, and such lensing
objects are often referred to as microlenses. In the case of galaxy-size lenses, where
the mass is around 1010 − 1012 M⊙, the Einstein radius is on the order of arcseconds.
For galaxy clusters with masses around 1015 M⊙, the Einstein ring can reach sizes on
the order of ten to hundred arcseconds. Since these underlying lens objects influence
the shape and distribution of critical curves, small-scale mass distribution in the universe.
These lensing objects determine the shape and distribution of critical curves and influence
strong gravitational lensing events. With the discovery of numerous strong gravitational
lensing events through observations, the theoretical framework regarding the relationship
between the underlying mass distribution and lensing properties such as magnification
and image locations has been developed.

In this chapter, we first derive the lens equation from the geodesic equation in Sec. 4.1.
The image distortion and magnification are shown in Sec. 4.2, followed by a review of the
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critical curve and caustic in Sec. 4.3 and multiple images in Sec. 4.4. Since our main
focus is the strong gravitational lensing, in which multiple images are observed near
critical curves, we show the magnification behavior in these regions in Sec. 4.5. As an
example of a lens system, we consider the spherically symmetric lens in Sec. 4.6. Next,
we consider specific cases involving microlenses. The case of a single microlens embedded
in a smooth mass distribution is explored in Sec. 4.7, while that of randomly distributed
microlenses is examined in Sec. 4.8. Note that the discussions in Secs. 4.1, 4.2, and 4.6
are primarily taken from the gravitational lensing textbook by Professor Masamune Oguri
[201]. Additionally, the contents of Secs. 4.3 and 4.4 are based on the textbook of [202].

4.1 Lens equation
The GR shows that light follows a ”straight” line in curved spacetime, known as the
geodesic. The geodesic equation is

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0, (4.2)

where xµ = (ct,x) with x being the comoving coordinates, λ is an affine parameter, and
Γµ
αβ is the Christoffel symbol, which encodes the geometry of curved spacetime,

Γµ
αβ =

1

2
gµν(gνα,β + gβν,α − gαβ,ν), (4.3)

with gµν denoting the metric of spacetime and gαβ,ν = ∂gαβ/∂x
ν . In the case of the

Minkowski spacetime, the geodesic equation reduces to the Newtonian equation of motion.
The geodesic equation can be transformed into the useful form,

d

dλ

(
gµν

dxν

dλ

)
− 1

2
gαβ,µ

dxα

dλ

dxβ

dλ
= 0, (4.4)

from which we see that gµνdxν/dλ conserves along geodesics when the metric tensor does
not depend explicitly on some coordinate xµ. This corresponds to the energy-momentum
conservation in the presence of shift symmetry. For massless particles, the line element is
null,

ds2 = gµνdx
µdxν = 0, (4.5)

and the affine parameter is defined by

dxµ

dλ
= kµ, (4.6)

where kµ is the four-dimensional wavenumber vector. The zeroth component of this vector
corresponds to the angular frequency ω/c, and the spatial components represent the three-
dimensional wavevector, k. The null condition can be expressed with the four-vector as

kµkµ = 0, (4.7)

and the geodesic equation, Eq. (4.2), for massless particles becomes

dkµ

dλ
+ Γµ

αβk
αkβ = 0. (4.8)
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Equivalently, the geodesic equation given in Eq. (4.4) can be expressed as

dkµ
dλ

− 1

2
gαβ,µk

αkβ = 0. (4.9)

These equations serve as the foundation for deriving the lens equation.
We first consider the homogeneous and isotropic universe, whose spacetime can be

expressed by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

ds2 = −c2dt2 + a2
[
dχ2 + f 2

K(χ)(dθ
2 + sin2 θdϕ2)

]
, (4.10)

with fK(χ) being the function related to the curvature K, given by

fK(χ) =


1√
K

sin(
√
Kχ) (K > 0),

χ (K = 0),
1√
−K

sinh(
√
−Kχ) (K < 0).

(4.11)

Here, χ is the radial coordinate of the polar coordinates, and θ and ϕ are the angular
coordinates. Since the metric does not depend on the azimuthal angle ϕ, Eq. (4.4) can
be expressed as

g3ν
dxν

dλ
= a2f 2

K sin2 θ
dϕ

dλ
= 0, (4.12)

where the boundary condition, fK(χ = 0) = 0, is applied to obtain the second equality.
Therefore, we obtain

dϕ

dλ
= 0. (4.13)

Next, we consider the geodesic equation with µ = 2. From Eq. (4.4), we obtain

d

dλ

(
g2ν

dxν

dλ

)
=

1

2
gαβ,2

dxα

dλ

dxβ

dλ
= 0, (4.14)

where Eq. (4.13) is used to derive the last equality. Considering the boundary condition
at χ = 0, we obtain

dθ

dλ
= 0. (4.15)

The first component of the geodesic equation can similarly be written as

d

dλ

(
g1ν

dxν

dλ

)
=

1

2
gαβ,1

dxα

dλ

dxβ

dλ
= 0. (4.16)

By integrating both sides of the above equation and setting the integration constant to
unity, which can be achieved by choosing an appropriate affine parameter, we obtain

dχ

dλ
=

1

a2
. (4.17)

Finally, the zeroth component of the geodesic equation is

d

dλ

(
g0ν

dxν

dλ

)
=

1

2
gαβ,0

dxα

dλ

dxβ

dλ
=

ȧ

a3
. (4.18)

This can be further simplified to
cdt

dλ
= ±1

a
. (4.19)
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Note that Eq. (4.19) can also be derived from the null condition. Since we are interested
in the light propagation towards the observer, we choose the minus sign in Eq. (4.19) in
the following.

To derive the lens equation, which describes how light is deflected in the presence of
mass, we consider the perturbation to the FLRW metric,

ds2 = −
(
1 +

2Φ

c2

)
c2dt2 + a2

(
1− 2Ψ

c2

)
γijdx

idxj, (4.20)

where γij denotes the spatial tensor given by

γijdx
idxj = dχ2 + f 2

K(χ)ωabdx
adxb (4.21)

with
ωabdx

adxb = dθ2 + sin2 θdϕ2. (4.22)

Here Φ and Ψ are the gravitational potential and the curvature perturbation, respectively.
They are assumed to be small, |Φ/c2| ≪ 1, |Ψ/c2| ≪ 1, and the relation Φ = Ψ holds since
there is no anisotropic stress at least to first order in the GR. Considering the first-order
perturbation of the geodesic equations, the angular components of the geodesic equation
become

d

dχ

[
f 2
K(χ)

dxa

dχ

]
+

2

c2
ωabΦ,b = 0. (4.23)

This equation shows how the light ray is bent by the presence of the gravitational po-
tential. The factor of two in the second term comes from the contribution of curvature
perturbation Ψ in addition to the gravitational potential Φ, which is different from New-
tonian mechanics. By integrating in terms of the radial coordinate χ, we can obtain

xa(χs)− xa(0) = − 2

c2

∫ χs

0

dχ′ 1

f 2
K(χ

′)

∫ χ′

0

dχ ωabΦ,b(χ,θ(χ))

= − 2

c2

∫ χs

0

dχ ωabΦ,b(χ,θ(χ))

∫ χs

χ

dχ′ 1

f 2
K(χ

′)
, (4.24)

where χs denotes the radial coordinate of the source and the observer is located at χ = 0.
By calculating the second integral and using the relation ωabΦ,b = (∇θΦ)

a, we can simplify
the above equation as

θ(χs) = θ(0)− 2

c2

∫ χs

0

dχ
fK(χs − χ)

fK(χ)fK(χs)
∇θΦ(χ,θ(χ)). (4.25)

This represents the lens equation, which relates the light from an object at the comoving
distance χs and celestial coordinates θ(χs) to the observed celestial coordinates θ(0). The
bending of light occurs due to the influence of the intervening mass distribution.

Since the gravitational potential on the right-hand side of Eq. (4.25) depends on θ(χ),
which itself is determined by the lens equation, it takes the form of an integral equation.
A common approximation is to evaluate the gravitational potential at the position of the
observer. With this simplification, the lens equation becomes

θ(χs) = θ(0)− 2

c2

∫ χs

0

dχ
fK(χs − χ)

fK(χ)fK(χs)
∇θΦ(χ,0). (4.26)
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The location of the source is often denoted by β = θ(χs) and the location of the observed
image is denoted by θ = θ(0), leading to

β = θ − 2

c2

∫ χs

0

dχ
fK(χs − χ)

fK(χ)fK(χs)
∇θΦ(χ,θ). (4.27)

The lens equation given in Eq. (4.27) can be interpreted as a mapping from the lens
plane to the source plane. Furthermore, since the deflection angle is relatively small, we
can approximate the light-passing region as locally flat and use Cartesian coordinates
instead of celestial coordinates. In this framework, the source and image positions are
represented as β = (β1, β2) and θ = (θ1, θ2), respectively, and the gradient with respect
to θ is expressed as ∇θ = (∂/∂θ1, ∂/∂θ2). More simpler form of the lens equation is
expressed by

β = θ −α(θ), (4.28)
where the α(θ) is the deflection angle. By introducing the lens potential ψ(θ) given by

ψ(θ) =
2

c2

∫ χs

0

dχ
fK(χs − χ)

fK(χ)fK(χs)
Φ(χ,θ), (4.29)

the deflection angle can be expressed by

α(θ) = ∇θψ(θ) =
2

c2

∫ χs

0

dχ
fK(χs − χ)

fK(χ)fK(χs)
∇θΦ(χ,θ). (4.30)

In most cases, gravitational lensing is caused by a single object such as a galaxy and
galaxy cluster. Since the size of these lenses is much smaller than their distance to the
source, the thin lens approximation, which treats lenses as having negligible thickness
along the line of sight, is commonly applied. When the lens object is located at redshift
zℓ, or corresponding to the scale factor aℓ, its density profile can be approximated as

ρ(r) ≃ δD(Z)Σ(r⊥), (4.31)

where r⊥ = aℓfK(χℓ)θ with χℓ = χ(zℓ), Z represents the coordinate along the line of sight
with Z = 0 at the location of the lens, and Σ denotes the surface density. The density
profile is related to the gravitational potential as

Φ(r) = −
∫
d3r′

Gρ(r)

|r − r′|
≃ −G

∫
d2r′⊥

Σ(r′
⊥)√

|r⊥ − r′
⊥|2 + Z2

, (4.32)

from which the gradient of the gravitational potential can be expressed as

∇θΦ ≃ GaℓfK(χℓ)

∫
d2r′⊥

r⊥ − r′
⊥

{|r⊥ − r′
⊥|2 + Z2} 3

2

Σ(r′
⊥)

≃ 2GfK(χℓ)δD(χ− χℓ)

∫
d2r′⊥

r⊥ − r′
⊥

|r⊥ − r′
⊥|2

Σ(r′
⊥)

= 2Gaℓ{fK(χℓ)}2δD(χ− χℓ)

∫
d2θ′

θ − θ′

|θ − θ′|2
Σ(θ′). (4.33)

In the second equality, the following approximation is applied,

1

{|r⊥ − r′
⊥|2 + Z2} 3

2

≃ 2δD(Z)

|r⊥ − r′
⊥|2

≃ 2a−1
ℓ δD(χ− χℓ)

|r⊥ − r′
⊥|2

. (4.34)
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By substituting Eq. (4.33) into Eq. (4.30), the deflection angle under the thin lens ap-
proximation can be expressed as

α(θ) =
1

π

∫
d2θ′ κ(θ′)

θ − θ′

|θ − θ′|2
, (4.35)

where κ is the convergence, defined as

κ(θ) =
Σ(θ)

Σcr
(4.36)

and Σcr is the critical surface density, given by

Σcr =
c2

4πG

Dos

DolDls
. (4.37)

Here, Dol, Dos, and Dls are the angular diameter distances from the observer to the lens,
from the observer to the source, and from the lens to the source, respectively. These
distances can be expressed as

Dol =
fK(χℓ)

1 + zℓ
= aℓfK(χℓ), (4.38)

Dos =
fK(χs)

1 + zs
= asfK(χs), (4.39)

Dls =
fK(χs − χℓ)

1 + zs
= asfK(χs − χℓ), (4.40)

where as is the scale factor corresponding to the source redshifts zs. Note that the lens
potential can be written as

ψ(θ) =
1

π

∫
d2θ′ κ(θ′) ln |θ − θ′|, (4.41)

under the thin lens approximation. In Fig. 4.1, we show the schematic picture of the
gravitational lensing system.

The lens equation, Eq. (4.28), can also be derived from the scalar function, called
Fermat potential,

τ(θ;β) =
1

2
(θ − β)2 − ψ(θ), (4.42)

which is the function of θ with β entering as a parameter. The Fermat potential corre-
sponds to the time it takes for light emitted from the coordinate point β in the source
plane to pass through the coordinate point θ in the lens plane and reach the observer, up
to an affine transformation [203]. The lens equation can be obtained from

∇θτ(θ;β) = 0, (4.43)

expressing the principle that physical light rays travel along paths whose travel time is
stationary.
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Dol Dls

Dos

Lens plane Source plane

Source

Lensβ

θ

Figure 4.1: Schematic illustration of gravitational lensing system under the thin lens
approximation.

4.2 Image distortion and magnification
In Sec. 4.1, we derive the lens equation, which describes how the light emitted from
a source propagates through the spacetime in the presence of a lens mass distribution.
Using the lens equation, we explore the distortion of images and their magnification in
this section.

Since the lens equation maps the image plane to the source plane, the distortion of
images is characterized by the Jacobian matrix,

A(θ) =
∂β

∂θ
=

(
δij −

∂2ψ(θ)

∂θi∂θj

)
=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (4.44)

where κ is the convergence as defined in Eq. (4.36), and γ1 and γ2 are the two components
of the shear. The convergence and shear components can be expressed in terms of the
lens potential as

κ =
1

2

(
∂2ψ

∂θ21
+
∂2ψ

∂θ22

)
, (4.45)

γ1 =
1

2

(
∂2ψ

∂θ21
− ∂2ψ

∂θ22

)
, (4.46)

γ2 =
∂2ψ

∂θ1∂θ2
. (4.47)
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Figure 4.2: The effect of the convergence κ (left) and the shear components γ1 (middle),
γ2 (right) on the shape of the observed images. The green lines indicate the original shape
of the background source. The red and light blue lines indicate the observed shape of the
images.

The total shear is defined as γ =
√
γ21 + γ22 . While the convergence κ affects the size of

the image, it does not alter its shape. In contrast, the shear γ distorts the image, causing
changes in its shape due to the tidal gravitational field. These characteristics can be
understood by analyzing the eigenvalues and eigenvectors of the Jacobian matrix. Since
κ is the coefficient of the identity matrix, it isotropically scales the image size. Specifically,
the image size increases if κ > 0 and decreases if κ < 0, without affecting the shape of
the images. For the shear component γ1, the eigenvectors are aligned with the coordinate
axes, (θ1, θ2) = (1, 0) and (0, 1). A positive γ1 stretches the image along the θ1 axis and
compresses it along the θ2 axis, transforming a circular source into an ellipse elongated
in the θ1-direction. Conversely, if γ1 < 0, the image is stretched in the θ2-direction. For
the shear component γ2, the eigenvectors are tilted by 45 degrees from the coordinate
axes, (θ1, θ2) = (1, 1) and (1,−1). A positive γ2 elongates the image along the (1, 1)
direction while compressing it along the (1,−1) direction, and vice versa for a negative
γ2. Figure 4.2 illustrates the schematic effect of convergence and shear components on
the shapes of images, highlighting how κ expands or contracts the image and how γ1 and
γ2 distort the image.

In gravitational lensing, the surface brightness remains conserved, as described by the
relation

I(θ) = I(s)[β(θ)]. (4.48)

Here, I(θ) denotes the surface brightness of the image, while I(s)[β(θ)] represents the
intrinsic surface brightness of the source. The surface brightness is defined as the energy
per unit time, area, solid angle, and frequency, i.e., I [erg/s/m2/sr/Hz]. To show this con-
servation law, we provide a brief derivation based on the Liouville theorem. The Liouville
theorem states that the phase-space density of photons remains constant. Considering
that light rays travel from a solid angle dΩ into an area dA, then the phase-space volume
can be written as

d3x = cdtdA, (4.49)

d3p = dpxdpydpzdΩ = p2dpdΩ =
E2

c3
dEdΩ, (4.50)

where the relation E = cp is used in the last equality. With E = hν, the Liouville theorem
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asserts that
N

d3xd3p
=

Nc2

h3ν2dtdAdΩdν
= const., (4.51)

with N being the number of photons. The surface brightness can be expressed as

Iν =
Nhν

dtdAdΩdν
∝ N

d3xd3p
ν3. (4.52)

Since the frequency ν remains unchanged in a gravitational lens system, the surface bright-
ness conservation theorem can be obtained from Eq. (4.52).

Due to the surface brightness conservation theorem, the magnification of a small source
can be expressed as

µ(θ) =
Fimage

Fsource
=

I(θ)dΩimage

I(s)[β(θ)]dΩsource
=
dΩimage

dΩsource
=

1

detA(θ) =
1

(1− κ(θ))2 − |γ(θ)|2
,

(4.53)
where F is the flux, F [erg/s/m2/Hz], and dΩsource and dΩimage denote the open angle of
the source and the observed image, respectively. The magnification, µ, can have either a
positive or negative sign, with the sign indicating the parity of the image. Negative-parity
images are mirror-symmetric to the source. The origin of magnification lies in the fact
that gravitational lensing bends light that would not normally reach a given region and
makes it reach there. For an extended source, the total magnification can be expressed
as the weighted sum of the magnifications at all points

µ =

[∫
d2β I(s)(β)

]−1 ∫
d2β I(s)(β) µp(β), (4.54)

where µp(β) is the total magnification summed over all observed images for a point source
located at β,

µp(β) =
∑
i

|µ(θi)|. (4.55)

4.3 Critical curve and caustic
The magnification derived from Eq. (4.53) diverges to infinity when the following condition
is satisfied,

detA = (1− κ− γ)(1− κ+ γ) = 0. (4.56)

This condition generally holds along a curve in the lens plane, known as the critical
curve. The magnification can be expressed as the product of the tangential magnification,
µt = (1 − κ − γ)−1, and the radial magnification, µr = (1 − κ + γ)−1. The tangential
critical curve corresponds to the locus where the tangential magnification diverges, while
the radial critical curve is defined analogously as the locus where the radial magnification
becomes infinite. When the critical curves on the lens plane are mapped to the source
plane using the lens equation, Eq. (4.28), the resulting lines in the source plane are called
caustics. These are further classified into tangential caustics and radial caustics.

On the critical curves, the magnification formally diverges. However, this infinite
magnification is unphysical and is prevented by two main factors: the finite source size
and the breakdown of the geometrical optics approximation, which requires wave optics.
Nevertheless, sources near the caustics produce highly magnified images, observed near
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the critical curves. The number of images depends on the relative position of the source to
the caustics. For larger β, a single image is observed near θ ≃ β, where the lens mapping
is locally invertible since detA ̸= 0. In this region, the number of images is unchanged,
however, when the source crosses a caustic, a pair of images is either created or destroyed
near the corresponding critical curve. The number of images increases (decreases) by two
when the source moves from the outer (inner) side to the inner (outer) side of the caustic,
following the odd-number theorem introduced in Sec. 4.4. A source located near the inner
side of the caustics produces a pair of highly magnified images with opposite parities, i.e.,
the opposite signs of magnification.

While the critical curves are smooth, the caustics are not necessarily smooth; they
consist of smooth folds and cusps. To examine this, let ξ be the parameter describing the
critical curve, θ(ξ). The corresponding caustic is given by β(θ(ξ)). The tangent vector
to the caustic can be written as

dβ(θ(ξ))

dξ
=
∂β

∂θ

dθ(ξ)

dξ
= A(θ(ξ))

dθ(ξ)

dξ
. (4.57)

When the tangent vector to the critical curve, dθ(ξ)/dξ, is parallel to the eigenvector of
A corresponding to the eigenvalue zero, it follows that dβ/dξ = 0. Since the caustic is a
closed curve, this condition indicates the presence of a cusp. If the source lies close to and
inside a cusp, it generates three highly magnified images near the corresponding point on
the critical curve. In this case, the sum of the absolute magnifications of the two outer
images equals that of the central image as shown in Sec. 4.5.

In this way, the geometry of a lens mapping can be quantitatively understood with
critical curves and caustics. The critical curves separate the lens plane into regions of
positive (µ > 0) and negative (µ < 0) parity. The caustics divide the source plane into
regions with different numbers of observed images. Each time the source crosses the
caustics, the number of images changes by two, either increasing or decreasing. When
an extended source is positioned on the caustic, the two or three (in the case of a cusp)
images merge. As one of the eigenvalues of A vanishes along the critical curves, the images
become highly distorted in the direction of the corresponding eigenvector, i.e., tangential
or radial direction.

Figure 4.3 shows an example of critical curves on the lens plane and caustics on
the source plane. The two lines on each plane correspond to the tangential and radial
critical curves or caustics, respectively. In this case, the tangential caustic lies inside
the radial caustic, while the tangential critical curve is located outside the radial critical
curve. The tangential caustic can be divided into fold and cusp caustics. Note that
the magnification becomes significantly high near both the tangential and radial critical
curves, however, images near the radial critical curve are difficult to observe since the
central region of the lens is typically very bright. Thus, highly magnified images are
generally observed around the tangential critical curves. As shown in the figure, the
outermost source (purple) produces a single image. When the source crosses the radial
caustic, the number of images increases by two, and it further increases when crossing the
tangential caustic. For a finite-sized source located on a caustic, the two images near the
corresponding critical curve merge, forming an elongated arc stretched in the tangential
or radial direction.



4.4. MULTIPLE IMAGES 73

radial caustic

Source plane Lens plane

tangential 
caustic

radial  
critical curve

tangential  
critical curve

fold

cusp

Figure 4.3: The caustics and critical curves, and the locations for multiple images for
an elliptical lens are shown. In the left panel, five sources on the source plane are shown.
Their corresponding images on the lens plane are displayed with the same colors in the
right panel. This figure is adapted from [204].

4.4 Multiple images
Multiple images are formed in strong gravitational lensing. In this section, we first classify
the multiple images, then show the magnification theorem and the odd-number theorem,
and finally present the necessary and sufficient conditions for multiple images to be formed.

To classify the multiple images, the Fermat potential τ(θ;β) defined in Eq. (4.42) is
useful. Since the images correspond to the stationary points of the Fermat potential, as
described in Eq. (4.43), they can be classified as minima, maxima, or saddle points of
the Fermat potential. Since the Jacobian matrix can be expressed by the Hessian of the
Fermat potential,

Aij = δij −
∂2ψ

∂θi∂θj
=

∂2τ

∂θi∂θj
, (4.58)

the classification of these stationary points is determined by the signs of the two eigenval-
ues of A. At a minimum of the Fermat potential, both eigenvalues are positive, leading to
detA > 0 and trA > 0. At a maximum, both eigenvalues are negative, thus detA > 0 and
trA < 0. At a saddle point, the eigenvalues have opposite signs, resulting in detA < 0.
Since the trace of the Jacobian matrix is expressed as

trA = 2(1− κ), (4.59)

the minima (maxima) occur at positions where the convergence satisfies κ < 1 (κ > 1).
Considering the classification condition, the single image corresponds to the minima.
Furthermore, the images corresponding to minima are magnified when κ ≥ 0, known as
the magnification theorem [205], which can be understood from the following relation,

0 < detA = (1− κ)2 − γ2 < 1. (4.60)

Since each source is mapped onto at least one minimum image, the total magnification of
all sources exceeds unity in positive-density regions.
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When the source crosses the caustics, a pair of images forms or disappears. These
images correspond either to a saddle point and a maximum or to a saddle point and a
minimum. Since these image pairs have opposite signs of magnification, the critical curve,
which divides the lens plane into regions of positive and negative parity, must lie between
them. Thus, the creation and annihilation of images at the critical curve can also be
understood in terms of the Fermat potential (time delay) surface. The number of multiple
images is always expected to be odd since images are always created and annihilated in
pairs of two. This property is known as the odd-number theorem [206], which holds when
the Fermat potential is smooth and continuous. One proof of this theorem is based on
Morse theory. By considering a manifold where the time delay surface is closed at the
top, and denoting the numbers of minima, saddle points, and maxima as nmin, nsad, and
nmax, respectively, the Morse theory gives the following relation,

nmin − nsad + nmax + 1 = χ, (4.61)

where the Euler characteristic χ is two for a two-dimensional sphere. From this relation,
we find

ntot = nmin + nsad + nmax = 1 + 2nsad (4.62)
which demonstrates that the total number of images is always odd.

There are two general criteria for the occurrence of multiple images. The first criterion
is that multiple images are formed if, and only if, there exists a point θ where the condition
detA(θ) < 0 satisfies. When detA > 0 across the entire lens plane, the lens equation is
globally invertible, resulting in a single image corresponding to the minimum. However,
if detA < 0 at some point, the image at that point corresponds to a saddle point, and
according to the odd-number theorem, at least two additional images must form. The
second criterion provides a sufficient but not necessary condition for multiple imaging:
multiple images are produced when there is a point where κ > 1. In such regions,
images do not correspond to minima, as minima occur only when κ < 1, and thus,
multiple images form. Again, the image at that point corresponds to a maximum or a
saddle point (not a minimum), resulting in multiple images from the odd-number theorem.
While the second criterion is not the necessary condition for multiple images, it shows
that the critical surface density Σcr is the characteristic surface mass density for strong
gravitational lensing.

4.5 Magnification near critical curve and caustic
This section reviews magnification near critical curves and caustics. We begin by exam-
ining the fold caustic, focusing on how the magnification depends on the distance to the
critical curve and caustic. Next, we briefly show the magnification near the cusp caustic.
Finally, we show the effects of finite source size on the magnification and present the
probability distribution function (PDF) for high magnifications.

To analyze magnification near the critical curve and the fold caustic, it is convenient
to place the origins of the lens plane and the source plane on the critical curve and caustic,
respectively, and expand the lens potential around these origins. The Taylor expansion
of the lens potential is expressed as

ψ(θ) = ψ(0) + (ψ,1(0)θ1 + ψ,2(0)θ2) +
1

2
(ψ,11(0)θ

2
1 + 2ψ,12(0)θ1θ2 + ψ,22(0)θ

2
2)

+
1

6
(ψ,111(0)θ

3
1 + 3ψ,112(0)θ

2
1θ2 + 3ψ,122(0)θ1θ

2
2 + ψ,222(0)θ

3
2), (4.63)
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where the subscription of , 1 and , 2 indicate partial derivatives with respect to θ1 and θ2,
respectively. The zeroth and first-order terms of the lens potential can be omitted, as they
only introduce constant shifts in the potential and the deflection angle. The convergence
at the origin, denoted as κ0, is expressed in terms of the lens potential as

κ0 =
1

2
(ψ,11(0) + ψ,22(0)). (4.64)

Then, we can express the second derivative of the lens potential at the origin as

ψ,11(0) = κ0 + (1− κ0) cosω, (4.65)
ψ,22(0) = κ0 − (1− κ0) cosω, (4.66)

where ω is an arbitrary constant. Since the origin lies on the critical curve, the determinant
of the lensing Jacobian matrix vanishes at the origin, detA(0) = 0. This condition leads
to

ψ,12(0) = −(1− κ0) sinω. (4.67)
For simplicity, ω = 0 can be chosen. We further consider a completely orthogonal config-
uration, where the train of micro-images is oriented perpendicular to the critical curve.
Aligning the critical curve with the θ2 axis such that detA((0, θ2)) = 0, it follows that
ψ,112(0) = ψ,122(0) = 0. Additionally, symmetry about the critical curve for images
produced by the same source leads to ψ,222(0) = 0. Finally, defining ψ,111(0) = −ϵ, pro-
portional to the curvature of the critical curve as shown in Sec. 4.6.1, the lens potential
can be expressed as [46, 207]

ψ(θ) =
1

2
{κ0(θ21 + θ22) + (1− κ0)(θ

2
1 − θ22)} −

ϵ

6
θ31. (4.68)

Using Eq. (4.30), the deflection angle can be calculated as

α(θ) =

(
θ1 − ϵ

2
θ21

(2κ0 − 1)θ2

)
. (4.69)

The lens equations can be expressed as

β1 =
ϵ

2
θ21, (4.70)

β2 = 2(1− κ0)θ2, (4.71)

from which the Jacobian lens matrix can be derived as

A(θ) =

(
ϵθ1 0
0 2(1− κ0)

)
. (4.72)

The convergence and the shear at the position θ can be calculated from the lens potential
by using Eqs. (4.45), (4.46), and (4.47), which are expressed as

κ(θ) = κ0 −
ϵ

2
θ1, (4.73)

γ1(θ) = 1− κ0 −
ϵ

2
θ1, (4.74)

γ2(θ) = 0, (4.75)
γ(θ) = 1− κ0 −

ϵ

2
θ1. (4.76)
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The magnification is obtained as the inverse of the determinant of the Jacobian matrix,
expressed as

µ(θ) =
1

| detA(θ)| =
1

2ϵ(1− κ0)
· 1

θ1
. (4.77)

Equation (4.77) indicates that the critical curve corresponds to a straight line on the lens
plane, given by θ1 = 0 as expected, and the magnification is inversely proportional to the
distance from the critical curve. By applying Eq. (4.70), the magnification on the source
plane can be expressed as

µ(β) =
1√

2ϵ(1− κ0)
· 1√

β1
. (4.78)

To derive this relation, a factor of two is included because two images with equal mag-
nification appear symmetrically on either side of the critical curve when the source lies
inside the caustic. On the source plane, the caustic corresponds to a straight line, β1 = 0,
and the magnification depends on the distance as µ ∝ β−1/2.

In the case of the cusp caustic, it is helpful to use the lens potential expressed as

ψ(θ) =
1

2
(1− bc)θ

2
1 +

1

2
θ22 −

1

4
acθ

4
2 −

1

2
ccθ1θ

2
2. (4.79)

The Jacobian matrix can be expressed as

A(θ) =

(
bc ccθ2
ccθ2 3acθ

2
2 + ccθ1

)
, (4.80)

and the magnification is written as

µ(θ) =
1

(3acbc − c2c)θ
2
2 + bcccθ1

. (4.81)

The critical curve corresponds to a parabola with θ2 = 0 as its axis, and the associated
caustic follows the relation β2

2 ∝ β3
1 , indicating that the origin is in a cusp. Considering

a source located along the β1 axis, i.e., β2 = 0, when the source lies outside the caustic
(β1 < 0), a single image is observed at (θ1, θ2) = (β1/bc, 0). When the source is located
inside the caustic (β1 > 0), two additional images appear at (θ1, θ2) = (2acβ1/(2acbc −
c2c), ±

√
2ccβ1/(c2c − 2acbc) ). These two additional images emerge symmetrically along

the θ1 axis. The magnification of these three images can be calculated as

µ =
1

ccβ1
, − 1

2ccβ1
, − 1

2ccβ1
. (4.82)

From this equation, we can see that the magnification scales as µ ∝ β−1
1 . Furthermore,

the sign of the magnification for the central image on the θ1 axis differs from that of the
other two images, and its absolute magnification is twice as large.

Given that the occurrence of the cusp caustic is rarer than that of the fold caustic,
we primarily focus on the fold caustic in the subsequent discussion. When considering a
source with a finite size σW, the magnification Eq. (4.78) is averaged over the size of the
source as

µ(β) =
1√

2ϵ(1− κ0)

1√
2πσ2

W

∫ ∞

0

dβ′
1

1√
β′
1

exp
[
−(β′

1 − β1)
2

2σ2
W

]
, (4.83)
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where a Gaussian surface brightness profile is applied. While the magnification of the point
source mathematically diverges on critical curves, there is a maximum magnification in
the case of the finite-sized source due to the average effect, with the peak magnification
being expressed as

µmax ≃ 1√
2ϵ(1− κ0)

· 1
√
σW

. (4.84)

Next, we examine the area on the lens plane where the magnification exceeds µ, which
is denoted by aℓ(> µ) [208]. The area can be obtained by integrating along the critical
curve with the help of Eq. (4.77), leading to

aℓ(> µ) ≃
∮
dξ

dl

dξ

1

2ϵ(1− κ0)µ
∝ 1

µ
, (4.85)

where ξ is the parameter of the critical curve. By differentiating with respect to the
magnification, the area where the magnification is between µ and µ+ dµ is expressed as∣∣∣∣daℓ(> µ)

dµ

∣∣∣∣ dµ ∝ 1

µ2
dµ. (4.86)

The cross-section is defined as the area on the source plane where the magnification lies
between µ and µ+ dµ. This can be obtained by mapping the corresponding area on the
lens plane onto the source plane,∣∣∣∣das(> µ)

dµ

∣∣∣∣ dµ =
2

µ

∣∣∣∣daℓ(> µ)

dµ

∣∣∣∣ dµ ∝ 1

µ3
dµ. (4.87)

A factor of two appears in the middle term because the images are on both sides of the
critical curve. Therefore, the area on the source plane where the magnification exceeds
µ, which is denoted by as(> µ), is given by

as(> µ) ∝ 1

µ2
. (4.88)

The above relations indicate that when the source is randomly distributed on the source
plane, the probability that the magnification becomes µ, i.e., the high-magnification tail
of the PDF, is given by

dP

dµ
∝ µ−3, (4.89)

or equivalently,
dP

d log10 µ
∝ µ−2. (4.90)

We show the detailed modeling for the high-magnification tail of the PDF including its
parameter dependence in Chap. 5.

4.6 Spherically symmetric lens
As a specific example of a lens model, we focus on the spherically symmetric lens, a
foundational and useful case. Due to the spherical symmetry, the coordinates on the lens
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plane can be reduced to θ = |θ|. Utilizing the definition of the lens potential given in
Eq. (4.41), it can be rewritten as

ψ(θ) =
1

π

∫ ∞

0

dθ′
∫ 2π

0

dφ′ θ′κ(θ′) ln
√
θ2 + θ′2 − 2θθ′ cosφ′

= 2

∫ θ

0

dθ′ θ′κ(θ′) ln θ + 2

∫ ∞

θ

dθ′ θ′κ(θ′) ln θ′ (4.91)

Since a constant shift in the lens potential has no physical impact, we redefine the lens
potential as

ψ(θ)− 2

∫ ∞

0

dθ′ θ′κ(θ′) ln θ′, (4.92)

which simplifies the expression of the lens potential to,

ψ(θ) = 2

∫ θ

0

dθ′ θ′κ(θ′)
θ

θ′
. (4.93)

The deflection angle can be derived from Eq. (4.30), leading to

α(θ) = κ̄(< θ)θ, (4.94)

where κ̄(< θ) represents the mean convergence within a circular region of a radius θ,

κ̄(< θ) =
2

θ2

∫ θ

0

dθ′θ′κ(θ′). (4.95)

The deflection angle in Eq. (4.94) implies that the source lies along the same direction as
the image, as indicated by the lens equation in Eq. (4.28). Thus, introducing the notation
β = |β|, the lens equation can be rewritten as

β = θ − α(θ) = (1− κ̄(< θ))θ, (4.96)

where α(θ) is the magnitude of the deflection angle. The shear components can be ex-
pressed with the convergence as

γ1(θ) = −(κ̄(< θ)− κ(θ)) cos(2ϕ), (4.97)
γ2(θ) = −(κ̄(< θ)− κ(θ)) sin(2ϕ), (4.98)
γ(θ) = |κ̄(< θ)− κ(θ)|, (4.99)

where ϕ represents the argument of the vector θ, given by ϕ = arctan(θ2/θ1). Note that
for a spherically symmetric lens, the system can be characterized using the tangential
shear, which is defined as

γ+(θ) = κ̄(< θ)− κ(θ). (4.100)
The magnification can be expressed using Eq. (4.53), which reduces to

µ(θ) =
1

(1− κ̄)(1− 2κ+ κ̄)
. (4.101)

The tangential and radial magnifications correspond to the first and second factors in the
denominator of the above expression, respectively.
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When the source is located at β = 0, the image forms a ring, known as the Einstein
ring. The radius of this ring, called the Einstein radius, is defined by the condition,

κ̄(< θEin) = 1. (4.102)

By defining the cylinder mass, which is the enclosed mass of the surface mass density,

M(< θ) = D2
ol

∫ θ

0

dθ′ 2πθ′Σ(θ′), (4.103)

the Einstein radius, as defined by Eq. (4.102), can be expressed as

θEin =

√
4GM(< θEin)

c2
Dls

DolDos
. (4.104)

Since the above expression does not assume any specific mass distribution for the radial
density profile, it indicates that the total enclosed mass can be reliably estimated once
the Einstein radius is measured.

4.6.1 Point mass lens
A point mass lens is a specific example of a spherically symmetric lens, which can be
applied when considering microlensing. The density profile of a point mass lens is given
by

ρ(r) =Mδ
(3)
D (r). (4.105)

By integrating the density along the line of sight, the convergence can be expressed by

κ(θ) =
4πGM

c2
Dls

DolDos
δ
(2)
D (θ). (4.106)

The average convergence within a radius θ is

κ̄(< θ) =
1

πθ2

∫
|θ′|<θ

d2θ′ κ(θ′) =
4GM

c2
Dls

DolDos

1

θ2
=
θ2Ein
θ2

, (4.107)

where the Einstein radius θEin, obtained by Eq. (4.104), is

θEin =

√
4GM

c2
Dls

DolDos
. (4.108)

Note that the Einstein radius depends on the mass of the lens and it can be calculated as

θEin ≃
(

M

1011 M⊙

) 1
2
(
DolDos/Dls

Gpc

)− 1
2

arcsec, (4.109)

from which the Einstein radius of a stellar-mass object is on the order of micro-arcseconds.
This is why such lenses are referred to as microlenses. In contrast, the Einstein radii are
typically on the order of arcseconds for galaxy-mass lenses, and ten to hundred arcseconds
for galaxy cluster lenses. Substituting Eq. (4.106) into the lens equation, Eq. (4.96), we
obtain,

β = θ − θ2Ein
θ
, (4.110)
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from which the lens potential can be expressed as

ψ(θ) = θ2Ein ln θ. (4.111)

Here, we briefly check that the quantity ϵ in the lens potential Eq. (4.68), which is
defined by the minus of the third-order derivative of the lens potential with respect to
θ1, is proportional to the curvature of the critical curve. By expanding the lens potential
around a point on the critical curve in the radial direction, θ = θEin + δθ, we can express
the third-order term as

ψ3rd(δθ) ≃
1

3θEin
(δθ)3, (4.112)

from which it follows that ϵ ∝ θ−1
Ein.

From the lens equation, the Jacobian matrix can be expressed as

A(θ) =

(
1 +

θ2E
θ2

cos 2ϕ θ2E
θ2

sin 2ϕ
θ2E
θ2

sin 2ϕ 1− θ2E
θ2

cos 2ϕ

)
. (4.113)

Since the convergence is zero except at the origin, the magnitude of the shear obtained
from Eq. (4.99) is

γ(θ) =
θ2Ein
θ2

. (4.114)

The magnification is determined entirely by the shear and is given by

µ(θ) =

{
1−

(
θEin

θ

)4
}−1

. (4.115)

As indicated by Eq. (4.115), the Einstein radius represents the location where the magni-
fication diverges to infinity. Consequently, the Einstein ring aligns with the critical curve
on the lens plane. When the source is located at β, two images are observed at

θ± =
1

2

(
β ±

√
β2 + 4θ2Ein

)
. (4.116)

Notably, the number of images is always two, which appears to violate the odd-number
theorem. However, this discrepancy arises due to the singular density distribution, vio-
lating the assumption of a smooth and continuous Fermat potential surface required for
the odd-number theorem to hold.

4.6.2 Singular isothermal sphere
The singular isothermal sphere (SIS) is the mass model often employed for galaxies and
galaxy clusters. Its density profile can be expressed as

ρ(r) =
σ2

2πGr2
, (4.117)

where σ is the velocity dispersion. The convergence and the average convergence for the
SIS lens model are given by

κ(θ) =
θEin

2θ
, (4.118)

κ̄(< θ) =
θEin

θ
, (4.119)
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where the Einstein radius is given by

θEin =
4πσ2

c2
Dls

Dos
. (4.120)

The deflection angle can be derived using the relation α(θ) = κ̄(< θ)θ for a spherically
symmetric lens, yielding the constant deflection angle,

α(θ) = θEin. (4.121)

The shear is calculated as

γ(θ) = κ̄(< θ)− κ(θ) =
θEin

θ
, (4.122)

from which the convergence and shear are equal for the SIS lens model.

4.7 Microlens in a smooth mass distribution
In this section, we consider a point mass lens embedded in the constant convergence κB
and total shear γB as the background. We show that the size of the critical curve becomes
larger when a smooth mass distribution exists in the background [136].

We first start from the lens equation, which is modified from Eq. (4.110) and has
additional terms regarding the background mass distribution,

β1 =
θ1
µt,B

− θ2Einθ1
θ2

, (4.123)

β2 =
θ2
µr,B

− θ2Einθ2
θ2

, (4.124)

where the tangential and radial magnifications by the background smooth component are
given by

µt,B = (1− κB − γB)
−1, (4.125)

µr,B = (1− κB + γB)
−1. (4.126)

The total magnification due to the smooth background mass distribution is expressed by
µB = µt,Bµr,B. In regions close to the tangential critical curve, µt,B becomes significantly
large, while µr,B remains approximately equal to unity. The corresponding Jacobian
matrix is expressed as

A(θ) =

(
µ−1

t,B +
θ2E
θ2

cos 2ϕ θ2E
θ2

sin 2ϕ
θ2E
θ2

sin 2ϕ µ−1
r,B − θ2E

θ2
cos 2ϕ

)
. (4.127)

The determinant of the Jacobian matrix is

detA = µ−1
t,Bµ

−1
r,B + (µ−1

r,B − µ−1
t,B)

θ2Ein
θ2

cos 2ϕ− θ4Ein
θ4

. (4.128)

In the direction of ϕ = π/2, the magnification can be expressed as,

µ(θ) = µt,Bµr,B
1

1− (µt,B − µr,B)
θ2E
θ2

− µt,Bµr,B
θ4Ein
θ4

≃ µt,Bµr,B
1

1−
(

µt,Bθ2Ein
θ2

)2 . (4.129)
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Comparing Eqs. (4.115) and (4.129), we see that the Einstein radius increases by a factor
of √µt,B in the presence of the background smooth component. This enhancement arises
because the area of the tangential critical curve is scaled by a factor of µB ≃ µt,B. It
is worth noting that since the expansion rate of the critical curve is unity in the ϕ = 0
direction, the actual shape of the critical curve is gourd-like [136].

The magnification behavior near the critical curve and caustic can be approximated
as follows. Expanding the magnification derived in Eq. (4.129) around the critical curve
at θ =

√
µt,BθEin + ∆θ, we can express the magnification as a function of the distance

from the critical curve on the lens plane as

µ(∆θ) =
1

2
µt,Bµr,B

(√
µt,BθEin

∆θ

)
. (4.130)

We can confirm that the dependence aligns with Eq. (4.77). Now, let us examine the
magnification near the caustic on the source plane. Since the caustic exhibits an asteroid-
like shape as numerically confirmed by [136], and the direction ϕ = π/2 corresponds
to the cusp, where caustic crossings are infrequent, we focus on directions near but not
exactly at ϕ = π/2. In this region, the normal vector to the caustic is approximately
along the β1 axis. We thus consider a point on the source plane given by (β1, β2) =
(∆β1, θEin

√
µt,B/µr,B), where ∆β1 represents the distance to the caustic and the second

component corresponds to the caustic size along the β2 axis. The corresponding point on
the lens plane is (θ1, θ2) = (∆θ1,

√
µt,BθEin), where ∆θ1 is given by

∆θ1 =

√
1

2
µ

3
2
t,BθEin∆β1. (4.131)

Assuming that the distance to the critical curve ∆θ can be approximated by ∆θ1, the
magnification near the caustic can be obtained by substituting Eq. (4.131) into Eq. (4.130),

µ(∆β) =
1√
2
µt,Bµr,B

√
θEin√
µt,B∆β

. (4.132)

Here, the notation ∆β1 has been generalized to ∆β. The magnification behavior is con-
sistent with the dependence given in Eq. (4.78). Moreover, while this approximation may
not be fully accurate, Eq. (4.132) is in agreement with the numerical results presented in
[136].

4.8 Randomly distributed microlenses in a smooth
mass distribution

In the previous section, we focus on a single microlens within a smooth mass distribu-
tion. In this section, we extend the analysis to multiple randomly distributed microlenses
and show the ensemble average of the total magnification and its variance across many
realizations. It is important to note that the total magnification refers to the sum of the
magnifications of the multiple micro-images produced by the individual microlenses.

We consider the case where the background convergence and shear are given by κB
and γB, respectively, and randomly distribute microlenses with the same masses, i.e., the
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same Einstein radii. The average convergence of microlenses is denoted by κ⋆. In this
setup, the average magnification µav = ⟨µtot⟩ is given by

µav(β) =
1

2π(σ2
ml + σ2

W)

∫
d2θ exp

[
−|θ − β −αB|2

2(σ2
ml + σ2

W)

]
, (4.133)

as analytically shown by [209]. Here, αB denotes the deflection angle arising from the
background smooth mass distribution, and σ2

ml represents the variance of the random
deflection angle caused by the microlenses,

σ2
ml(R⋆, l⋆) = κ⋆θ

2
Ein

(
1− γE + ln 2R⋆

θ2Einl⋆

)
, (4.134)

with γE being the Euler-Mascheroni constant, and R⋆ and l⋆ being given by
R⋆ = µBσeff, (4.135)

l⋆ =
1

σeff
, (4.136)

σeff =
√
σ2

W + κ⋆θ2Ein. (4.137)

The variance of the total magnification, ⟨µ2
tot⟩, can be expressed as

⟨µtot(β)
2⟩ =

∫
d2θ′

∫
d2θ′′

exp
[
−1

2
uT(Cml(θ̃) + σ2

WI)
−1u

]
(2π)2

√
det(Cml(θ̃) + σ2

WI)
, (4.138)

where the two-dimensional vector θ̃ is defined by θ̃ = θ′′−θ′, and u is the four-dimensional
vector given by

u(θ′,θ′′;β) =


θ′1 − β1 − αB1(θ

′)
θ′2 − β2 − αB2(θ

′)
θ′′1 − β1 − αB1(θ

′′)
θ′′2 − β2 − αB2(θ

′′)

 . (4.139)

The matrix Cml(θ̃) in the integrand is the square matrix of order four, which is represented
by

Cml(θ̃) =


σ2

ml 0 Cml
13 Cml

14

0 σ2
ml Cml

14 Cml
24

Cml
13 Cml

14 σ2
ml 0

Cml
14 Cml

24 0 σ2
ml

 , (4.140)

with each component being given by
Cml

13 (θ̃) = Cml
∥ (θ̃) cos2 ϕ+ Cml

⊥ sin2 ϕ, (4.141)
Cml

14 (θ̃) = Cml
∥ (θ̃) cosϕ sinϕ− Cml

⊥ (θ̃) cosϕ sinϕ, (4.142)
Cml

24 (θ̃) = Cml
∥ (θ̃) sin2 ϕ+ Cml

⊥ (θ̃) cos2 ϕ, (4.143)

where ϕ is the polar angle of θ̃, and Cml
∥ (θ̃) and Cml

⊥ (θ̃) are expressed as

Cml
∥ (θ̃) = κ⋆θ

2
Ein

ln R⋆

θ̃
+ ln

√
1 +

θ̃2

4R2
⋆

− 1

2

 , (4.144)

Cml
⊥ (θ̃) = κ⋆θ

2
Ein

ln R⋆

θ̃
+ ln

√
1 +

θ̃2

4R2
⋆

+
1

2

 . (4.145)
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The standard deviation of the total magnification is calculated from Eqs. (4.133) and
(4.138) as

Std[µtot(β)] =
√

⟨µ2
tot(β)⟩ − µ2

av(β). (4.146)

It is important to note that these analytical estimates are not valid when θ̃ ≫ R⋆ and θ̃ ≪
θ2Einl⋆. Therefore, this analytic model does not accurately predict the high-magnification
tail of the PDF that we focus on in Chap. 5.

In the specific case where the background convergence κB and shear γB are constant,
these equations can be expressed in simpler forms. The average magnification is given by

µav = µB =
1

|(1− κB)2 − γ2B|
, (4.147)

and the variance of the total magnification is

⟨µ2
tot⟩ =

µ2
av
4π

∫
d2Θ̃

exp
[
−1

2
Θ̃T ·D(θ̃) · Θ̃

]
√
Bml(θ̃)

, (4.148)

where Bml(θ̃) in the denominator is given by

Bml(θ̃) = (σ2
ml + σ2

W − Cml
∥ (θ̃))(σ2

ml + σ2
W − Cml

⊥ (θ̃)). (4.149)

Here, the two-dimensional vector Θ̃ is defined by Θ̃ = Θ′′−Θ′, with Θ̃ being the rescaled
coordinate on the lens plane,

Θ =

(
|1− κB − γB|θ1
|1− κB + γB|θ2

)
. (4.150)

Each component of the two dimensional matrix D(θ̃) is

D11 =
1

4Bml(θ̃)
{2σ2

ml + 2σ2
W − (Cml

∥ (θ̃) + Cml
⊥ (θ̃)) + (Cml

∥ (θ̃)− Cml
⊥ (θ̃)) cos 2ϕ}, (4.151)

D12 = D21 =
1

4Bml(θ̃)
(Cml

∥ (θ̃)− Cml
⊥ (θ̃)) sin 2ϕ, (4.152)

D22 =
1

4Bml(θ̃)
{2σ2

ml + 2σ2
W − (Cml

∥ (θ̃) + Cml
⊥ (θ̃))− (Cml

∥ (θ̃)− Cml
⊥ (θ̃)) cos 2ϕ}. (4.153)

In this thesis, we choose ϕ = 0 to calculate these values.
Another useful example is when the lens potential is given by Eq. (4.68), which is im-

portant to study the magnification near the critical curve and the caustic. The deflection
angle by a background smooth mass distribution, αB, is given by Eq. (4.69). In this case,
the Gaussian integral for θ2 can be easily performed, and we obtain the expression for the
average magnification as

µav(β) =
1√

2ϵ(1− κ0)

1√
2π(σ2

ml + σ2
W)

∫ ∞

0

dβ′
1

1√
β′
1

exp
[
− (β′

1 − β1)
2

2(σ2
ml + σ2

W)

]
. (4.154)

Note that Eq. (4.154) is identical to Eq. (4.83), with the only difference being the term
corresponding to the source size.
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Figure 4.4 shows an example of the average magnification and its 1σ standard devi-
ation. The lens potential is given by Eq. (4.68) with parameters κ0 = 0.7 and ϵ = 10−5.
The average magnification is computed using Eq. (4.154), with κ⋆ = 0.004, θEin = 1.0,
and σW = 0.05. Following the approach of [209], we set R⋆ = 1500, which differs from
the original value defined by Eq. (4.135). To compute the dispersion, we do not directly
use Eq. (4.138) due to computational limitations. Instead, we first calculate the back-
ground convergence and shear using the average magnification from Eq. (4.147), assuming
κB = γB, for each point β1. Next, we use Eq. (4.148) to determine the dispersion of the
total magnification. Even with this simplified calculation, the derived values are in close
agreement with those obtained from Eq. (4.138). Finally, the standard deviation is ob-
tained using Eq. (4.146). To prevent computational breakdowns in the regions θ̃ ≫ R⋆

and θ̃ ≪ θ2Einl⋆, we apply the following formula instead of Eqs. (4.144) and (4.145), as
introduced by [209],

Cml
X,reg(θ̃) = σ2

ml sgn(Cml
X (θ̃))

[
1 +

(
σ2

ml

|Cml
X (θ̃)|e−(θ̃/(νR⋆))2

)n]−1/n

, (4.155)

with n = 10 and ν = 1. We employ the Monte Carlo algorithm vegas [210, 211] to
perform the integration. Note that physical units are ignored here, as the main focus is
on presenting the numerical results for the magnification.
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Figure 4.4: The average (red solid line) and 1σ standard deviation (blue dashed lines)
of the total magnifications as a function of the distance from the (macro-)caustic in the
presence of multiple microlenses within a background smooth mass distribution. The
vertical dotted line shows the position of the (macro-)caustic. We set the parameters
as κ0 = 0.7, ϵ = 10−5, κ⋆ = 0.004, θEin = 1.0, σW = 0.05, and R⋆ = 1500. Here, we
omit the physical units of these parameters. The average magnification and dispersion
are calculated from Eqs. (4.154) and (4.148). Note that κB and γB are obtained from
Eq. (4.147) assuming κB = γB for each point β1. The standard deviation is calculated
from Eq. (4.146). This figure is taken from [48].



Chapter 5

The ultra-high magnification events
due to microlenses

5.1 Introduction
Advancements in observational techniques have led to a significant increase in the number
of observed gravitational lensing events. Notably, individual stars experiencing extreme
magnification near the critical curves of galaxy clusters have been observed. The first
example of such an event is Icarus, a blue supergiant star within a spiral galaxy hosting
the supernova (SN) Refsdal [212] at a redshift z = 1.49, observed near the critical curve
of the MACS J1149 galaxy cluster at redshift z = 0.544, with its magnification estimated
to exceed a factor of two thousand (see Fig. 5.1) [44]. The high magnification lasts for
less than two weeks, indicating that microlenses, such as intracluster light (ICL) stars,
contribute to the event. The discovery of Icarus originates from the observations of the
MACS J1149 cluster, which was selected as one of the targets in the Hubble Frontier
Fields (HFF) project of Hubble Space Telescope (HST) [213]. The project was conducted
between 2013 and 2015, during which the gravitationally lensed SN Refsdal images were
discovered [212]. As SN Refsdal provided a unique opportunity to determine the Hubble
constant through time-delay measurements [214], follow-up observations were carried out
[215]. These frequent monitoring observations of the MACS J1149 cluster for approxi-
mately two years of observations in total led to the discovery of Icarus in 2016 and the
measurement of its light curve. Another notable case is Earendel, a star at very high
redshift z = 6.7, identified through HST observations [216]. Earendel is located on the
critical curve of the galaxy cluster WHL0137–08 at redshift z = 0.566 and the magnifica-
tion is estimated to exceed a factor of thousand, with the peak magnification continuing
for over 3.5 years. This phenomenon is attributed to the influence of microlenses form-
ing a corrugated band near the critical curve [207]. Despite the similarities of Icarus
and Earendel such as extreme magnification due to microlenses near critical curves of
galaxy clusters, these events differ in terms of the locations and durations of their peak
magnifications. The number of highly magnified events has been increasing rapidly (e.g.,
[45, 217]), paving the way for statistical analyses of such phenomena.

Highly magnified stars are observed near the critical curves of lens objects, with their
shapes determined by the mass distributions. Critical curves can generally be classified
into two types. The first type arises from the overall density profile of the lensing object,
resulting in macro-critical curves. These curves are typically several tens of arcseconds
in size for galaxy clusters as shown in Sec. 4.6. The shape of the macro-critical curve is

87



88CHAPTER 5. THE ULTRA-HIGH MAGNIFICATION EVENTS DUE TO MICROLENSES

Figure 5.1: The ultrahigh magnified individual star Icarus (formally called LS1) in the
spiral galaxy hosting SN Refsdal was observed near the critical curve of the MACS J1149
galaxy cluster (white dashed line) by HST observation. The peak magnification of Icarus
was identified in May 2016 as shown in the lower right panel. This figure is taken from
[44].

perturbed by the existence of subhalos [46], which we show in Chap. 6. Cold dark matter
(CDM) subhalos with masses in the range Mh = 106–108 M⊙ can induce distortions on
the order of ten milli-arcseconds [218]. The second type consists of micro-critical curves
created by microlenses such as stars and black holes within the lens objects. These micro-
critical curves are typically much smaller, often less than milli-arcseconds. In galaxy
clusters, intracluster light (ICL) stars play a role as microlenses. Alongside ICL stars,
other compact objects such as primordial black holes (PBHs), which are potential alter-
natives to the standard CDM model as discussed in Sec. 2.3.2, can also act as microlenses.

The presence of microlenses within lens objects influences the observed features of
highly magnified stars [219]. Microlenses produce frequent peak magnifications and nu-
merous micro-images due to their micro-critical curves. The analytic work by [220] ex-
plores key characteristics of the systems such as the width of the corrugated network near
macro-critical curves, the frequency of caustic-crossing events, and peak magnifications.
They further use these results to constrain the parameter space for massive compact halo
objects as dark matter. The detailed ray-tracing simulations are conducted by [221] to
investigate the corrugated networks near macro-critical curves. Similarly, [136] study
microlensing effects near critical curves and estimate the event rate of Icarus using the
Glafic software [222]. Furthermore, [223] consider the presence of axion minihalos in
galaxy clusters, showing that these minihalos induce surface density fluctuations and irreg-
ular light curves. The average and dispersion of magnification in a random microlensing
field within a smooth mass distribution are analytically derived by [209], where they ex-
tend the foundational work of [224], as reviewed in Sec. 4.8. The inverse ray-shooting
simulations are conducted by [225] and [226], and they derive probability distribution
functions (PDFs) under various parameter sets and provide fitting formulae to describe



5.2. HIGH-MAGNIFICATION TAIL OF PROBABILITY DISTRIBUTION FUNCTION89

these PDFs. While these studies have advanced our understanding of the statistical prop-
erties of highly magnified events near critical curves in galaxy clusters, a comprehensive
physical model for the high-magnification tail of the PDF applicable across a wide range of
parameters has yet to be developed. Addressing this gap serves as the primary motivation
for our study.

In this chapter, we first introduce an analytic model for the high-magnification tail of
the PDF, based on the number of independent micro-critical curves. Using the CCtrain
simulation, which is a modified version of Glafic [222] designed to calculate caustic
crossing events, we derive the PDF for point sources. We find that the combination of
the surface mass density of microlenses and the background (average) magnification is
a key quantity for describing the PDF across all parameter regions. Next, we address
the case of finite source sizes, which limit the maximum magnification and suppress the
high-magnification tail of the PDF. Leveraging simulations from the GPU-Enabled High-
Resolution cosmological MicroLensing parameter survey (Gerlumph) [225], we show
that this suppression is accurately modeled using a sigmoid function. Our analytic model
demonstrates good agreement with these simulation results, including parameter depen-
dencies on the background average magnification, the mass fraction of microlenses, and
finite source size effects. For practical applications, we focus on the Icarus-like system to
estimate the number of highly magnified stars and the probability distribution of their
observed positions. Given that the peak magnification of Icarus continues for about two
weeks during a two-year HST survey, the observed mean number of Icarus-like events
per snapshot can be approximated as 1/52 ≃ 0.019. Our results indicate that ICL stars
are consistent with the constraints on microlenses derived from the number of observed
events in HST data. Furthermore, we place constraints on the mass and mass fraction
of PBHs, assuming a monochromatic mass function for PBHs and the coexistence of ICL
stars.

This chapter is structured as follows. In Sec. 5.2, we present our analytic model for the
high-magnification tail of the PDF. In Sec. 5.3, we validate our model by comparing it with
simulation results. To account for the contribution of probabilities around the average
magnification, we show the model for the total PDF in Sec. 5.4. As an application of
the model, Sec. 5.5 focuses on the Icarus-like system, where we calculate the number of
highly magnified star events, the probability distribution of their observed locations, and
place constraints on the parameter space of microlenses and PBHs. Finally, we provide a
summary and discussion in Sec. 5.6. This chapter is based on our recent works presented
in [48, 50].

5.2 High-magnification tail of probability distribu-
tion function

In this section, we outline our modeling for the high-magnification tail of the PDF. We
consider a scenario where microlenses exist within a uniform smooth background. The
total average convergence and shear are represented by κtot and γtot, respectively. Since
ultra-high magnification events are observed near the critical curves of galaxy clusters,
where the mass distribution is often approximated by a singular isothermal sphere profile
as reviewed in Sec. 4.6.2, we adopt the relation κtot = γtot. The average convergence
due to microlenses is denoted by κ⋆, and the microlens mass fraction, f⋆, is defined as
κ⋆ = f⋆κtot. We assume that all microlenses have identical masses and are uniformly
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distributed randomly on the lens plane. Note that these assumptions may not fully
capture reality, as microlenses should follow a mass function, and some may form binary
systems, which we discuss further in Sec. 5.6. All microlenses have the same (original)
Einstein radius, denoted by θEin, and the total number of microlenses, N tot

⋆ , is proportional
to the microlens mass fraction, f⋆. The average magnification depends on the total mass
but is independent of f⋆, as shown in Eq. (4.147), and can be expressed as

µav =
1

|(1− κtot)2 − γ2tot|
=

1

|1− 2κtot|
. (5.1)

To be precise, while the background convergence is given by κB = κtot − κ⋆ due to the
fixed total convergence, the results from simulations conducted by Gerlumph [225] also
support this formula. Note that the average magnification can be separated into tangential
magnification, µt,av, and radial magnification, µr,av. Under the assumption κtot = γtot,
these components satisfy µt,av = µav and µr,av = 1.

We study the parameter dependence of the high magnification tail of the PDF on the
average magnification µav, which depends solely on the total convergence, and the mass
fraction of microlenses f⋆. For convenience, we introduce the normalized magnification

r =
µtot

µav
(5.2)

and focus on the high magnification regime, r ≳ 10. Note that, since the average mag-
nification is determined by the distance from the macro-critical curve or caustic, e.g.,
Eq. (4.133), our model allows us to study how the high-magnification events appear near
the macro-critical curve, as discussed in Sec. 5.5.

We find that the high-magnification tail of the PDF can be effectively modeled as

dP

d log10 r
∝ N indep

⋆

√
µav r

−2S(r; rmax). (5.3)

Here, N indep
⋆ represents the number of independent micro-critical curves, and S(r; rmax) is

the suppression factor due to the finite source size, effectively applied above the maximum
magnification rmax. For point sources, the suppression factor is unity; S(r; rmax) = 1.
The factor √

µav accounts for the stretching of the length of each micro-critical curve
(and corresponding micro-caustic) in the smooth background, as explained in Sec. 4.7.
The r−2 dependence emerges from the width around the micro-critical curve, where the
magnification is between log10 r and log10 r+d log10 r, as shown in Eq. (4.90). In summary,
the first three components on the right-hand side, N indep

⋆

√
µav r

−2, represent the total area
where the magnification lies between log10 r and log10 r + d log10 r, with the effect of the
finite source size included in S(r; rmax).

The independent micro-critical curve is one that is generated by a microlens, whose
distance to its nearest neighboring microlens is larger than the size of its own micro-critical
curve. To determine the number of independent micro-critical curves, we begin by deriv-
ing the distribution of nearest inter-microlens distances, denoted as θnid, for microlenses
randomly distributed across the lens plane.

Consider a scenario where microlenses are randomly distributed across a two-dimensional
lens plane with a number density n⋆,

n⋆ =
f⋆κtot

πθ2Ein
. (5.4)
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The average number of microlenses within an area S is given by N̄⋆ = n⋆S. Assuming
the number of microlenses follows a Poisson distribution, the probability of having N⋆

microlenses within the area S can be expressed as

P (N⋆;S) =
1

N⋆!
e−n⋆S(n⋆S)

N⋆ . (5.5)

To derive the distribution of the nearest inter-microlens distance from a single microlens,
we examine the distribution that satisfies the following two conditions. The first condition
is that there are no microlenses within a circle of radius θnid from a given microlens. The
second condition is that at least one microlens exists within a small annular region with
radii θnid and θnid + dθnid. The probability that satisfies the first condition is

P (N⋆ = 0;S = πθ2nid) = e−n⋆πθ2nid , (5.6)

and the probability satisfying the second condition is

1− P (N⋆ = 0;S = 2πθniddθnid) = 1− e−2n⋆πθniddθnid

≃ 2n⋆πθniddθnid. (5.7)

Thus, the probability of satisfying both conditions is given by

dQ

dθnid
= 2n⋆πθnide

−n⋆πθ2nid , (5.8)

from which it follows that the nearest inter-microlens distance follows a Rayleigh distri-
bution. The mean of the nearest inter-microlens distance is expressed as

θ̄nid =

∫ ∞

0

θnid
dQ

dθnid
dθnid =

1

2
√
n⋆

. (5.9)

Following the distribution of nearest inter-microlens distances, we can obtain the inde-
pendent number of micro-critical curves, N indep

⋆ . Considering that the typical size of each
micro-critical curve is √µavθEin, the probability that a micro-critical curve is independent
can be calculated as

Q(θnid >
√
µavθEin) =

∫ ∞

√
µavθEin

dQ

dθnid
dθnid = exp(−f⋆κtotµav). (5.10)

Thus, the number of the independent micro-critical curves is expressed as

N indep
⋆ = N tot

⋆ Q(θnid >
√
µavθE)

∝ f⋆κtot exp(−f⋆κtotµav). (5.11)

When the fraction of microlenses is sufficiently small, the nearest inter-microlens dis-
tance is typically larger than the size of each micro-critical curve, leading to Q(θnid >√
µavθEin) ≃ 1 and N indep

⋆ ≃ N tot
⋆ . As the microlens fraction or the average magnifica-

tion increases, the typical nearest inter-microlens distance becomes smaller than the size
of each micro-critical curve, leading to a decrease in the number of independent micro-
critical curves below the total number of microlenses, N indep

⋆ < N tot
⋆ . We refer to the

former as the ”linear regime” and the latter as the ”nonlinear regime”. The boundary be-
tween these two regimes can be determined by comparing the mean nearest inter-microlens
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Figure 5.2: Distribution of the nearest inter-microlens distance (black solid line). The
size of the micro-critical curve is shown in the vertical red solid line, and the mean of the
nearest inter-microlens distance is shown in the vertical black dashed line. The dotted
region is where the microlenses are independent. Here we set θEin = 0.2 arcsec, κtot = 0.48,
f⋆ = 0.15. This figure is taken from [48].

distance θ̄nid, as given by Eq. (5.9), with the size of each micro-critical curve √
µavθEin,

which results in

f⋆κtotµav ≃ 1. (5.12)

In the linear regime, where f⋆κtotµav ≲ 1, the number of independent micro-critical curves
scales directly with the microlens fraction, i.e., N indep

⋆ ∝ f⋆, as demonstrated by Eq. (5.11).
In contrast, the number of independent micro-critical curves undergoes exponential sup-
pression in the nonlinear regime. When considering the limit of f⋆ → 1, all matter com-
ponents are effectively captured by the microlenses, which leads to a distribution that
closely resembles the smooth matter distribution. This explains the suppression observed
in the nonlinear regime.

In Fig. 5.2, we show the distribution of the nearest inter-microlens distance (black solid
line), with its mean indicated by the vertical black dashed line, and compare it to the size
of the micro-critical curve (vertical red solid line). The microlenses with the nearest inter-
microlens distance larger than the size of the micro-critical curve (black dotted region)
contribute to the independent micro-critical curves. In this case, only a small fraction of
the microlenses are independent, as the mean nearest inter-microlens distance is smaller
than the size of the micro-critical curve, indicating the nonlinear regime.

For a point source, where the suppression factor is S(r; rmax) = 1, we can derive the
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high-magnification tail of the PDF by integrating all of these results to obtain

dP

d log10 r
∝ f⋆κtot exp(−f⋆κtotµav)

√
µavr

−2. (5.13)

The integrated probability above a magnification threshold rth can be derived as

PPS(r > rth) =

∫ ∞

rth

dP

d log10 r
d log10 r

∝ f⋆κtot
√
µav exp(−f⋆κtotµav)

(
1

rth

)2

, (5.14)

where PS refers to the point source. It can be shown that, by multiplying both sides by√
µav, Eq. (5.14) can be rewritten in a simpler form as

Y ∝ X exp(−X), (5.15)

with X = f⋆κtotµav and Y = PPS(r > rth)
√
µav. The boundary between the linear and

nonlinear regimes is given by X ≃ 1. For the first time, we show that by considering this
combination of parameters, the dependence of the high-magnification PDF on f⋆ and µav
can be analyzed in a unified way that covers both the linear and nonlinear regimes. A
discussion of the suppression factor due to the finite source size is provided in Sec. 5.3.

5.3 Comparison with simulations
To validate our model presented in Sec. 5.2, we perform detailed ray-tracing simula-
tions using our new code, CCtrain, which employs the same algorithm for solving the
lens equation as Glafic [222]. Note that CCtrain has also been utilized in [207] to
investigate magnification patterns near macro-critical curves. In addition to using an
adaptive grid for efficiently solving lens equations, CCtrain incorporates a hierarchical
tree algorithm to accelerate the computation of deflection angles for large populations of
microlenses [227]. Magnifications of each source are calculated from the second derivatives
of the lens potential as µ = 1/{(1− κ)2 − γ2}, where κ and γ represent the convergence
and shear at the image position, respectively. As a result, the magnifications obtained
from CCtrain correspond to those for point sources, with no effects from finite source
sizes included. In addition to the ray-tracing simulations performed with CCtrain, we
utilize publicly available magnification maps from Gerlumph [225] in our analysis. The
Gerlumph simulations employ the inverse ray-shooting method, where magnifications
are determined based on the number of inverse rays that converge within a single pixel
on the source plane. Consequently, the pixel size on the source plane can be interpreted
as the effective source size in the Gerlumph simulations.

For both CCtrain and Gerlumph, we analyze the cases where microlenses are
randomly distributed in a smooth background characterized by constant convergence
and shear with κtot = γtot, consistent with the setup described in Sec. 5.2. Note that
Gerlumph uses the smooth matter fraction s, which relates to the microlens fraction
via f⋆ = 1 − s. For CCtrain, we generate multiple realizations by varying the mi-
crolens distributions for a given parameter set, as detailed in Tab. 5.1. In contrast,
for Gerlumph, we use publicly available data provided through its online platform at
https://gerlumph.swin.edu.au, with the specific realizations listed in Tab. 5.2. Here, many
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Table 5.1: The simulation setups of CCtrain and the number of realizations. The
lengths of the box size in the x- and y-directions are denoted by lx and ly, respectively.
The box size and the resolution on the ”lens” plane are in the unit of the Einstein radius
of a point mass lens. This table is taken from [48].

κtot µav f⋆ (lx, ly) resolution realization
0.45 10 0.0015625 (15, 2) 0.003125 100,000
0.45 10 0.003125 (15, 2) 0.003125 100,000
0.45 10 0.00625 (15, 2) 0.003125 100,000
0.45 10 0.0125 (15, 2) 0.003125 100,000
0.45 10 0.025 (20, 3) 0.003125 100,000
0.45 10 0.05 (20, 3) 0.003125 100,000
0.45 10 0.10 (30, 3) 0.003125 61,549
0.45 10 0.25 (50, 4) 0.003125 349
0.49 50 0.0003125 (9, 2) 0.0125 100,000
0.49 50 0.000625 (12, 2) 0.0125 100,000
0.49 50 0.00125 (18, 2) 0.0125 100,000
0.49 50 0.0025 (25, 2) 0.0125 100,000
0.49 50 0.005 (35, 2) 0.0125 100,000
0.49 50 0.01 (50, 2) 0.0125 100,000
0.49 50 0.02 (70, 2) 0.0125 100,000
0.49 50 0.04 (100, 2) 0.0125 100,000
0.49 50 0.056 (119, 4) 0.0125 10,000
0.49 50 0.08 (140, 4) 0.0125 10,000
0.49 50 0.112 (166, 4) 0.0125 10,000
0.49 50 0.16 (200, 4) 0.0125 10,000
0.49 50 0.32 (280, 5.6) 0.0125 3,926

realizations are obtained by varying the source position while keeping the microlens distri-
bution fixed. From these realizations, we construct the PDF for the total magnification,
the sum of the absolute magnifications of multiple images. Specifically, we focus on the
regime where the condition µtot ≳ 10µav satisfies, which translates to r ≳ rth with the
normalized magnification threshold approximately given by rth ≃ 10.

In the following subsections, we investigate two cases to test our model: one for a
point source and another for a finite-sized source. The point source case is examined
using CCtrain, while the finite source size case is tested with Gerlumph. In Sec. 5.3.1,
we present the results for the point source case, followed by those for the finite source
case in Sec. 5.3.2.

5.3.1 Point source
For the point source case, the suppression term can be neglected and S(r; rmax) = 1
in Eq. (5.3). As shown in Eq. (5.15), the dependence of the parameters on the high
magnification tail of the PDF can be absorbed using the variables X and Y . Consequently,
the data should ideally follow along a single line on the X-Y plane. We introduce two
fitting parameters, A0 and B0. The parameter A0 is used to determine the normalization
of the PDF, while B0 accounts for the uncertainty in Eq. (5.12). Thus, B0 should be of
the order O(1). With A0 and B0, our model for the magnification PDF is then expressed
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Table 5.2: The realizations of Gerlumph used in this study. The resolution on the
”source” plane is expressed in the unit of the Einstein radius of a point mass lens. The
number of realizations is given for each value of f⋆. This table is taken from [48].
κtot µav f⋆ resolution realization
0.30 2.50 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.33 2.94 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.36 3.57 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.37 3.85 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.38 4.12 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.39 4.55 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.40 5.00 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.41 5.56 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.42 6.25 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.43 7.14 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.44 8.33 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.45 10.0 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.46 1.25 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.47 16.7 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000
0.48 25.0 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0025 100,000,000

as

PPS(r > rth)
√
µav =

A0

2.4
f⋆κtotµav exp(−B0f⋆κtotµav)

(
10

rth

)2

. (5.16)

We determine the parameters by fitting the simulation data obtained from CCtrain,
using a magnification threshold of rth = 10.

In Fig. 5.3, we present the fitting results. The best-fitting parameters are found to be
A0 = 0.057 and B0 = 0.394. The integrated PDF exhibits the turnover between linear
and nonlinear regimes, which is accurately reproduced by our model. As anticipated,
the simulation data for different parameter sets align closely along a single line in this
plane, with the best-fit value of B0 being of order O(1). To be precise, small discrepancies
between our model and the simulation data can be seen even in the simple linear regime.
Since the integrated probability scales almost linearly with the microlens mass fraction f⋆
in the linear regime for a given average magnification µav, the discrepancy might suggest
that the simple assumption of the size of the micro-critical curve expanding by √

µav times
the original Einstein radius is not entirely accurate. As mentioned in Sec. 4.7, the actual
micro-critical curve shapes like a gourd, expanding at a rate of √

µav in the ϕ = π/2
direction, while the expansion rate is unity in the ϕ = 0 direction. This leads to an
overestimate of the size of the micro-critical curve, potentially explaining the discrepancy
between the cases of µav = 10 and µav = 50. Moreover, the variation in the central value
tends to exceed the Poisson error for a given average magnification. This may also be
attributed to an inadequate estimation of the micro-critical curve size and an insufficient
number of realizations. Since the size of micro-critical curves is influenced by the shear
from neighboring microlenses, it might introduce scatter in the probability, leading to a
misalignment of the central value. Increasing the number of realizations is expected to
reduce this variation. Despite these discrepancies, our model successfully explains the
PDF within the scope of the zeroth-order approximation.
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Figure 5.3: Comparison of the integrated PDF between the simulations and our model.
The purple and orange dots are obtained by the CCtrain with κtot = 0.49 and 0.45,
respectively. The green dots are the simulation data from Gerlumph. The realizations
are listed in Tab. 5.1 and 5.2. The error bars are determined based on the Poisson
distribution of the number of realizations exceeding r > 10. The red line shows the fitting
result of our model in the case of the point source with fitting parameters A0 = 0.057 and
B0 = 0.394. The blue line shows the fitting result of our model with the finite source case
with a fitting parameter C0 = 2.0. This figure is taken from [48].
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5.3.2 Finite source size
When considering the finite source size, the model for the high-magnification tail of the
PDF becomes

dP

d log10 r
= 2 ln 10 PPS(r > rth)S(r; rmax)

(
r

rth

)−2

. (5.17)

In this subsection, we discuss the suppression function S(r; rmax) resulting from the finite
source size, based on the simulation data obtained from Gerlumph.

For the case of a finite source size, a maximum magnification arises due to the aver-
aging effect, as discussed in Sec. 4.5. The resolution on the source plane in Gerlumph
corresponds to the effective source size, expressed as σW = 0.0025θEin. In the linear
regime, where the micro-critical curves and micro-caustics are independent of each other,
the maximum magnification can be estimated using Eq. (4.132) as

rmax ≃

√
θEin√
µavσW

, (5.18)

where we neglect the O(1) prefactor. In the nonlinear regime, the size of the micro-critical
curves can be approximated by the average nearest inter-microlens distance [220]. Using
Eqs. (5.4) and (5.9), this distance can be written as

θ̄nid ≃ θEin√
f⋆κtot

, (5.19)

where we neglect the factor of two. Thus, in the nonlinear regime, the maximum mag-
nification can be derived by replacing √

µav to 1/
√
f⋆κtot in Eq. (5.18). This gives the

maximum magnification in the nonlinear regime as

rmax ≃

√
θEin√
µavσW

(
1

f⋆κtotµav

) 3
4

. (5.20)

By combining these results, we obtain the following expression for the maximum magni-
fication

rmax ≃

√
θEin√
µavσW

min
(
1, (C0f⋆µavκtot)

− 3
4

)
, (5.21)

where we introduce an O(1) fitting parameter, C0, to account for the uncertainty in the
estimation given by Eq. (5.20).

By analyzing the data from Gerlumph, we find that the sigmoid function is suitable
to capture the suppression,

S(r; rmax) =
1 + e−1

1 + exp
(

r−rmax
rmax

) . (5.22)

The function approaches unity when the maximum magnification becomes infinite, corre-
sponding to the point source case. In Fig. 5.4, we present the fitting results. The following
relation is used here,

S(r; rmax) = r2
dP

d log10 r

(
r20

dP

d log10 r

∣∣∣∣
r=r0

)−1

, (5.23)



98CHAPTER 5. THE ULTRA-HIGH MAGNIFICATION EVENTS DUE TO MICROLENSES

Figure 5.4: The suppression of the PDF obtained from Gerlumph data and fitting with
the sigmoid function. The color lines correspond to the different average magnifications.
Here we use the data with f⋆ = 0.2. The black line shows our sigmoid modeling of the
suppression with the fitting parameter C0 = 2.0. This figure is taken from [48].

which is derived from Eq. (5.17), and we normalize the x-axis by the maximum magnifi-
cation using Eq. (5.21), while the y-axis represents the right-hand side of Eq. (5.23) with
r0 = 3. Figure 5.4 shows that the sigmoid function with the maximum magnification
derived by Eq. (5.21) fits the simulation data well, with the fitting parameter C0 = 2.0.
Figure 5.3 shows the comparison of the integrated PDF between our model including the
suppression (blue line) and the simulation data (green points). In contrast to the point
source case, the data points for a finite source size do not exactly align in a single line due
to the additional dependence of µav in the suppression function through the maximum
magnification. However, this effect is relatively small and the data points still closely align
in a single line. We use a typical average magnification of µav = 6.25 (κtot = 0.42) to
calculate the maximum magnification for plotting our theoretical predictions in Fig. 5.3.
Note that since realizations are generated by varying only the source position while keep-
ing the microlens distribution fixed for the Gerlumph, the central value may be biased,
or the errors may be underestimated due to unaccounted systematic uncertainties.

Combining all the results presented here, we conclude that the high magnification tail
of the PDF can be represented as

dP

d log10 r
= 2 ln 10 PPS(r > rth)

1 + e−1

1 + exp
(

r−rmax
rmax

) ( r

rth

)−2

. (5.24)

The fitting parameters are A0 = 0.057, B0 = 0.394, and C0 = 2.0. We observe that this
model accurately captures the simulation results.
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By integrating the PDF above the magnification threshold for the finite source size
case, we can derive the following ratio,

PFS(r > rth)

PPS(r > rth)
= 2 ln 10 r2th

∫ ∞

rth

1

r2
1 + e−1

1 + exp
(

r−rmax
rmax

)d log10 r

≃
(
1− rth

rmax

)
e−

rth
rmax +

(
rth

rmax

)2{
−CI

(
rth

rmax

)
+ SI

(
rth

rmax

)}
. (5.25)

Here, CI and SI refer to the hyperbolic cosine integral and the hyperbolic sine integral,
respectively. They are expressed as CI(x) =

∫ x

0
dt cosh(t)/t and SI(x) =

∫ x

0
dt sinh(t)/t.

In the point source limit, where rmax ≫ rth, the first term on the right-hand side becomes
dominant and simplifies to unity, as anticipated.

5.4 Total probability distribution function
Our analytic model discussed in Sec. 5.2 focuses solely on the high-magnification tail. In
this section, we explain how the total PDF is modeled.

A ray-shooting simulation indicates that the PDF around the average magnification
follows a log-normal distribution [226]. The average magnification and its variance are
analytically examined in [209], as shown in Sec. 4.8. Based on the average magnification
µav and its standard deviation Std[µav], Eq. (4.146), we model the PDF near the average
magnification as

dP

d log10 µ

∣∣∣∣
middle

=
1√

2πσ2
log10 µav

exp
(
−(log10 µ− log10 µav)

2

2σ2
log10 µav

)
, (5.26)

with the standard deviation for the log-normal distribution being

σlog10 µav =
Std[µav]

µav ln 10
. (5.27)

The high-magnification tail of the PDF given in Eq. (5.24), can be expressed with r
replaced by µ as,

dP

d log10 µ

∣∣∣∣
high

= 2 ln 10 PPS(µ > µth)
1 + e−1

1 + exp
(

µ−µmax
µmax

) ( µ

µth

)−2

. (5.28)

Combining the above PDFs, we can obtain the total PDF,

dP

d log10 µ

∣∣∣∣
tot

=

 Anorm
dP

d log10 µ

∣∣∣
middle

(µ ≤ µ0)

dP
d log10 µ

∣∣∣
high

(µ ≥ µ0),
(5.29)

where µ0 > µav represents the matching magnification between the log-normal distribution
and the high-magnification tail, and Anorm is the normalization constant ensuring that
the total probability is normalized to unity.

In Fig. 5.5, we present an example of the total PDF at θ = 0.039 arcsec away from the
macro-critical curve in the Icarus-like system, reviewed in Sec. 5.5.1. It can be observed
that the transition between the middle region and high magnification tails occurs at
µ0 ≃ 3µav in this case.
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Figure 5.5: The total PDF of the magnification at θ = 0.039 arcsec away from the
macro-critical curve in the Icarus-like system, which corresponds to β = 7.0× 10−5 arcsec
away from the macro-caustic. The average magnification is calculated from Eq. (5.30) and
its variance is calculated from Eq. (4.148), where we consider the constant background
convergence and the shear. The constant background convergence is calculated from the
average magnification assuming the shear equals the convergence. The green dash-dot
line shows the PDF around the average magnification, which is shown in a vertical dotted
line. The blue dashed line represents the high-magnification tail of the PDF. The red
solid line is the total PDF with the normalization factor Anorm = 0.9986 as introduced in
Eq. (5.29). This figure is taken from [48].

5.5 Application to Icarus-like system

In this section, we apply our analytic model to the Icarus-like system, predicting the
number of high-magnification events and the probability distribution of their observed
positions. Additionally, we constrain the mass and mass fraction of microlenses and PBHs
based on the number of high-magnification events. We begin by reviewing the properties
of the MACS J1149 cluster and Icarus, as primarily discussed in [136], in Sec. 5.5.1. In
Sec. 5.5.2, we calculate the probability of exceeding a certain magnification threshold and
its associated image location. Here, we ignore the correlation between the source size and
the intrinsic luminosity of the source star, as well as the threshold in apparent magnitude.
These factors are incorporated in Sec. 5.5.3 for a more accurate prediction of the number
of Icarus-like events. In the same section, we also present the constraint on the microlens
parameter space. Finally, we provide the constraint on the mass and mass fraction of
PBHs in the presence of ICL stars in Sec. 5.5.4.
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5.5.1 MACS J1149 cluster and Icarus
Average magnification

Icarus is an extremely magnified blue supergiant star within a spiral galaxy at redshift
z = 1.49, observed in the MACS J1149 galaxy cluster at redshift z = 0.544. The average
magnification, µav, near Icarus can be described as a function of the distance β from the
macro-caustic of the galaxy cluster, given by

µav(β) = µhµr
1√

2π(σ2
ml + σ2

W)

∫ ∞

0

dβ′

√
β0
β′ exp

[
− (β′ − β)2

2(σ2
ml + σ2

W)

]
, (5.30)

with µh = 13, µr = 3, and β0 = 0.045 arcsec [136]. The tangential magnification as a
function of the distance θ to the macro-critical curve is expressed as

µt(θ) = µh

√
β0
β(θ)

= µh

(
θ

arcsec

)−1

. (5.31)

The source size σW, expressed in arcseconds, is connected to the physical source size R
by

σW = 2.7× 10−12

(
R

R⊙

)
arcsec. (5.32)

The effective source size, σml, which represents the variance in the random deflection
angle induced by microlenses, is expressed by Eq. (4.134), where the Einstein radius of a
microlens with mass M⋆ is given by

θEin = 1.8× 10−6

(
M⋆

M⊙

) 1
2

arcsec. (5.33)

Note that although R⋆ is originally defined in Eq. (4.135), we adopt R⋆ = 1500 as stated
in [209].

Icarus is observed at a distance of 0.13 arcsec from the macro-critical curve. The
average magnification at this location is approximately µav = 300, which is much lower
than the expected magnification of O(103). This difference indicates that the star is
significantly magnified by microlenses. The ICL stars can contribute to the microlensing
effect. The surface mass density of the ICL stars is estimated to be ΣICL = 1.1 − 1.9 ×
107 M⊙/kpc2, which corresponds to an average convergence of κICL = 0.0046−0.0079 [44].
This estimation is based on the observed surface brightness of the ICL and the mass-to-
light ratios, consistent with previous analysis [228]. The mass-to-light ratios primarily
depend on the assumed initial mass functions (IMFs); the lower bound corresponds to the
Chabrier IMF [229, 230], while the upper bound corresponds to the Salpeter IMF [231],
introducing uncertainties in the estimation of the surface mass density. Given that the
total convergence is κtot = 0.83, estimated from the mass modeling of the MACS J1149
cluster [232], the mass fraction of ICL stars is calculated as κICL/κtot ≃ 0.005 − 0.009.
The most likely mass of the ICL stars is M⋆ ≃ 0.3 M⊙ [136]. This is reasonable by
considering the Salpeter IMF, which is a bottom-heavy IMF preferred for early-type
galaxies commonly found in galaxy clusters, and that substellar objects with masses below
0.08 M⊙ cannot undergo star formation due to insufficient mass for hydrogen-burning.
Conversely, stars with higher massM⋆ ≫ 1.5M⊙ are unlikely to survive the age of a galaxy
cluster. Therefore, we consider the typical mass range of ICL stars to be 0.1 − 10 M⊙,
with the most likely value around M⋆ ≃ 0.3 M⊙.
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Constraint on the radius of Icarus

The radius of Icarus can be constrained using the peak magnitude and the source crossing
time. To examine this, we first establish the relationship between the source size and its
luminosity. Assuming the source behaves like a blackbody with temperature T , this
relation can be derived from the Stefan–Boltzmann law,

L

L⊙
=

(
R

R⊙

)2(
T

T⊙

)4

. (5.34)

The estimated temperature, derived from the spectral energy distribution (SED) shown
in Fig. 5.6, is T ≃ 12000 K, which is characteristic of a blue supergiant [44]. The absolute
magnitude of the V-band can be expressed as

ML⋆,V = ML⊙,V − 2.5 log10

(
L

L⊙

)
= 1.65− 5 log10

(
R

R⊙

)
, (5.35)

where we use the V-band magnitude of the Sun ML⊙,V = 4.83 and the solar temperature
T⊙ = 5777 K, and apply Eq. (5.34) in the second equality. Including the bolometric
correction of B.C. = −0.69 [233, 234], the absolute magnitude can be expressed as

ML⋆ ≃ 1.0− 5 log10

(
R

R⊙

)
. (5.36)

For a source magnified by a factor of µ, its apparent magnitude can be expressed as

mL⋆ = ML⋆ +D − 2.5 log10 µ

≃ 45.1− 5 log10

(
R

R⊙

)
− 2.5 log10 µ, (5.37)

where D = 5 log10 d − 5 represents the distance modulus, with d denoting the luminos-
ity distance in parsecs. Given the source redshift, the distance modulus is D = 45.2.
Observations in the F125W band require a cross-filter K-correction to properly account
for differences between the observed and rest-frame filter transmission. This correction
is applied in the second equality to ensure consistent analysis. The observation of Icarus
suggests that the peak apparent magnitude is mL⋆ ≲ 26. The threshold of the magni-
fication µobsth required to reach this observed apparent magnitude can be derived from
Eq. (5.37) as

µobsth(R) = 4.4× 107
(
R

R⊙

)−2

. (5.38)

It is evident that smaller sources require higher magnifications to be observed due to
their smaller absolute magnitude. Since the maximum magnification can be derived from
Eq. (5.21) with Eqs. (5.32) and (5.33), the condition µobsth(R) ≲ µmax provides a lower
limit for the radius of Icarus,

Rmin = 69
(µav

300

)− 1
2

(
M⋆

M⊙

)− 1
6

R⊙. (5.39)
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30

29

28.5

28

27.5

27

M
ag

n
it

u
d

e
(A

B
)

Figure 5.6: The SEDs of Icarus, measured during the HFF project (red diamonds) and
during its peak magnification in May 2016 with a rescaling of the excess flux density by a
factor of four (black triangles). The SED shows a strong Balmer break consistent with the
host-galaxy redshift of 1.49. The stellar atmosphere models [235] for a mid-to-late B-type
star provide a reasonable fit, with the temperature and surface gravity parameters given
as T = 11180 K and log g = 2 (blue), T = 12250 K and log g = 4 (orange), T = 12375 K
and log g = 2 (black), and T = 13591 K and log g = 4 (green). This figure is taken from
[44].

where the nonlinear suppression term in Eq. (5.21) is neglected for this derivation. Sources
with radii larger than this minimum radius can be detected.

An additional constraint on the radius of Icarus can be derived from the source crossing
time, which is estimated by [136]

tsrc = 0.038

(
R

R⊙

)(
v

500 km/s

)−1

days. (5.40)

The velocity v has three main components: the transverse peculiar velocity of the galaxy
cluster, the relative transverse motion of microlenses within the cluster, and the transverse
velocity in the source plane. Among these, the dominant factor is the transverse peculiar
velocity of the galaxy cluster [136]. This is because, when we consider the relative velocity
in the source plane, the relative transverse motion of microlenses within the cluster is
suppressed by a factor of large magnification, and the transverse velocity in the source
plane becomes smaller than the transverse peculiar velocity of the galaxy cluster due to the
larger distance and redshift. For the MACS J1149 cluster, the three-dimensional peculiar
velocity is measured to be v3D = 638+1072

−393 km/s at a 68% confidence interval (CI) [236].
This value is higher than the typical peculiar velocity because MACS J1149 is a merging
cluster. The merger axis is inclined at an angle of α ≃ 30° relative to the plane of the sky
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Fig. 3: Light curve of the magnified star LS1, and best-matching simulated light curves
during each interval. Fluxes measured through all wide-band HST filters are converted to
F125W using LS1’s SED. Upper panel shows LS1’s full HST light curve which begins in
2004. The lower panel shows the most densely sampled part of the light curve including
the May 2016 peak (Lev 2016A). This maximum shows two successive peaks that may
correspond to a lensed binary system of stars at redshift z = 1.49.

18

Figure 5.7: The observed fluxes of Icarus from 2004 to 2017 are shown in black circles
measured through all wideband HST filters converted to the F125W band using the SED.
The best-matching light curves, calculated with a microlens population incorporated the
stellar evolution and core-collapse physics presented in [237], are also shown. The blue
solid line represents the case without PBHs, while the orange solid line corresponds to a
scenario where PBHs make up 3% of the total dark matter abundance. The upper panel
shows the full light curve and the lower panel shows the most densely sampled part of the
light curve including the peak magnification in May 2016. The peak magnification lasts
for approximately 10 days. This figure is taken from [44].

[236]. Therefore, the transverse peculiar velocity can be estimated as vpec = v3D cosα.
To account for the uncertainty in the peculiar velocity, we assume that its (transverse)
probability distribution follows a log-normal distribution, which is marginalized over in
Sec. 5.5.4. The light curve of Icarus indicates a source crossing time of less than 10 days as
shown in Fig. 5.7, providing an upper bound on the radius of the source. The maximum
radius can be expressed as

Rmax ≃ 260

(
vpec

500 km/s

)
R⊙. (5.41)

If the size of Icarus exceeds the maximum radius derived above, the duration of the peak
magnification would be longer, contradicting the observed results.

Star population in the arc

The width of the arc, which corresponds to the arm of the spiral galaxy that hosts Icarus,
perpendicular to the macro-critical curve is warc = 0.2 arcsec. The apparent magnitude
of the arc in the F125W band is 25 mag/arcsec2, corresponding to a luminosity density of
6.5× 109 L⊙/arcsec2. This luminosity density can be converted into the number density
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of source stars that are magnified. Assuming the stellar luminosity function follows a
power-law distribution, dnsource/dL ∝ L−2, the number density of source stars can be
determined from the luminosity density as

dnsource

d(L/L⊙)
=

6.5× 109 arcsec−2

µav ln(Lmax/Lmin)

(
L

L⊙

)−2

, (5.42)

with Lmin and Lmax being the minimum and maximum of the luminosity, respectively.
By applying Eq. (5.34) with T = 12000 K, the number density of source stars can be
expressed as a function of radius as

dnsource

d(R/R⊙)
=

2n0

µav

(
R

R⊙

)−3

, (5.43)

with n0 = 1.9 × 107 arcsec−2 assuming Lmin = 0.1 L⊙ and Lmax = 107 L⊙. The max-
imum luminosity can be used to estimate the maximum radius of the source, giving
Rmax = 730 R⊙. Note that the assumption of T = 12000 K for detectable individual stars
reflects our focus on relatively rare blue supergiants. While red supergiants have approx-
imately the same absolute magnitude as can be inferred from the Hertzsprung-Russell
(HR) diagram and are expected to be more abundant, their larger source size due to
lower temperature limits the maximum magnification, making them unobservable. Since
the star formation is active in the spiral galaxies [238], a sufficient number of such blue
supergiants is expected to be present.

5.5.2 Location of highly magnified events
In Sec. 5.4, we derive the total probability density function (PDF) at each point. In this
section, we provide predictions for the locations of images where the magnification exceeds
a given threshold µobsth. As mentioned before, we ignore the correlation between the
source size and the intrinsic luminosity of the source star, and the threshold in apparent
magnitude in this section, which are included in Sec. 5.5.3 to calculate the number of
Icarus-like events.

The probability that a source exceeds a given magnification threshold can be deter-
mined as follows. We first calculate the average magnification and the total PDF at each
location from the macro-critical curve. Then, by integrating the PDF above the thresh-
old rth = µobsth/µav, we can obtain the probability P (r > rth) at each point. In Fig. 5.8,
we present the probability of the magnification exceeding the thresholds µobsth = 1000,
3000, 9000, and 27000, as a function of the distance from the macro-critical curve, assum-
ing model parameters for the Icarus-like system. For moderate magnification thresholds
of 1000 and 3000, the probability increases as closer to the macro-critical curve since
the average magnification becomes larger. Near the macro-critical curve, the probabil-
ity approaches unity because the average magnification is large enough relative to the
threshold. For higher thresholds, 9000 and 27000, there are local minima in the proba-
bility between 0.0 and 0.1 arcsec. Furthermore, we observe that the position where the
probability reaches its maximum is not exactly on the macro-critical curve, but around
θ ≃ 0.05 arcsec in the case of µobsth = 27000.

To better understand this behavior, we break down the total PDF into two contri-
butions: one from the middle PDF, and the other from the high-magnification tail of
the PDF, as illustrated in Fig. 5.9. Regarding the middle PDF, which is around the
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average magnification, the probability approaches unity when the average magnification
exceeds the threshold, i.e., µav ≳ µobsth. For the high-magnification tail, we observe a
turnover near the macro-critical curve. Below this region, the probability is suppressed
exponentially, which occurs in the nonlinear regime where µav ≳ 1/(f⋆κtot). In contrast,
in the linear regime, the probability increases as the distance to the macro-critical curve
becomes closer due to the increase in the average magnification. This turnover behavior is
consistent with the results shown in Fig. 5.8 for high values of µobsth. The overall behavior
of the contribution from the high-magnification tail of the PDF can be explained using
Eq. (5.16). When we neglect the source size and approximate the relation between the
average magnification and the distance as µav ∝ θ−1, the integrated probability follows

P (µ > µobsth) ∝ µ
5
2av exp(−B0f⋆κtotµav)

∝ θ−
5
2 exp(−B0f⋆κtotµhµrθ

−1), (5.44)

from which the linear and nonlinear behavior can be understood. Another important
feature in Fig. 5.8 is how varying magnification thresholds influence the overall normal-
ization of the probability. This behavior can be easily understood from the relation
P (µ > µobsth) ∝ r−2

th ∝ µ−2
obsth.

The location of the observed Icarus is indicated by a vertical dashed line in Fig. 5.8.
We observe that this position has a sufficiently high probability of being detected, though
it is not the maximum. Note that a more detailed prediction for the observed position of
Icarus-like events is provided in Sec. 5.5.3. Additionally, Earendel, whose magnification
is expected to be more than a thousand, is observed precisely on a macro-critical curve,
consistent with expectations including the middle PDF.

It is important to note that [239] develop a model for the probability distribution
of the observed locations. In their model, within the corrugated region of the micro-
critical curves near the macro-critical curve, the probability distribution is considered
constant, with a decrease proportional to θ−2 outside this region. Furthermore, their
model alters the overall probability but maintains the same functional form across different
magnification thresholds. These aspects differ slightly from our approach described above.
As a result, by applying our new analytic model and repeating the analysis presented in
[239], we anticipate being able to derive more robust constraints on the abundance of
PBHs based on the observed positions of highly magnified stars. We leave this analysis
for future work.

5.5.3 The number of Icarus-like events
Based on the analytic model presented in Sec. 5.2 and the properties of the Icarus system
shown in Sec. 5.5.1, we estimate the number of highly magnified individual stars and
predict their observed locations. While Sec. 5.5.2 focuses on the probability of exceeding
the magnification threshold, we additionally account for the relation between the source
size and luminosity. The number of high-magnification events is determined by evaluating
whether the apparent magnitude surpasses a given threshold. The expected number of
such events in a single snapshot is then calculated as

N = 2

∫ θmax

θmin

dθ nsourcewarc

∫ ∞

µobsth(R)

dP

d log10 µ

∣∣∣∣
high

d log10 µ

= 2

∫ θmax

θmin

dθ
2n0warc

µav(θ)

∫ Rmax

Rmin

dR
R2

⊙

R3

∫ ∞

µobsth(R)

dP

d log10 µ

∣∣∣∣
high

d log10 µ, (5.45)
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Figure 5.8: The probability of the total magnification exceeding the observational thresh-
old µobsth as a function of the distance from the macro-critical curve in the Icarus-like sys-
tem. The red, blue, green, and purple lines indicate the cases with different magnification
thresholds µobsth = 1000, 3000, 9000, and 27000, respectively. The vertical dotted line
shows the position of the macro-critical curve. The vertical black dashed line represents
the observed location of the Icarus. This figure is taken from [48].

where the factor of two reflects that images form on both sides of the macro-critical
curve. In the second equality, we employ Eq. (5.43). It is important to note that Icarus,
with a peak magnification duration of less than two weeks, is likely caused by the high-
magnification tail. If this were not the case, the peak magnification would have lasted
longer, similar to what was observed for Earendel. Consequently, the number of events
is calculated based on the high-magnification tail of the PDF. The observation region is
defined between θmin = 0.0 arcsec and θmax = 1.3 arcsec. The maximum source radius
is determined as the smaller of the values given by Eq. (5.41) and 730 R⊙. The number
of events, as expressed in Eq. (5.45), depends on three parameters: the peculiar velocity
(or equivalently, the maximum source radius), the mass fraction of microlenses, and the
microlens mass. Note again that all microlenses are assumed to have the same mass.
Although the average magnification in Eq. (5.30) might exhibit a slight dependence on the
microlens mass and mass fraction, we adopt the numerical results based on our fiducial
parameters, f⋆ = 6 × 10−3 and M⋆ = 0.3 M⊙, as the parameter dependence has been
verified to be minimal.

Figure 5.10 shows the predicted number of highly magnified stars as a function of the
distance from the macro-critical curve with different assumed peculiar velocities of the
MACS J1149 cluster. The fiducial parameters are selected to represent those of ICL stars
[136]. As closer to the macro-critical curve, the expected number of events increases due
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Figure 5.9: The probability of the total magnification exceeding the observational thresh-
old µobsth = 1000. Dashed and dash-dot lines represent contributions from the middle
PDF and the high-magnification tail of the PDF, respectively. The vertical blue dotted
line indicates the approximate position of the transition between them. This figure is
taken from [48].

to the larger average magnification. However, at the center of the macro-critical curve, the
number of events decreases since the system enters the nonlinear regime, f⋆κtotµav ≳ 1.
With the fiducial parameters that correspond to ICL stars, we find that the highest
probability of detecting highly magnified stars aligns with the observed location of Icarus.
A higher peculiar velocity results in a larger maximum source radius, thereby increasing
the expected number of events. Figure 5.11 shows the case for different mass fractions of
microlenses. When the mass fraction of microlenses increases, the turnover point moves
farther from the macro-critical curve, as depicted by the green solid line. Conversely, if
the mass fraction is sufficiently small, the nonlinear regime disappears and the turnover
vanishes, as indicated by the red solid line. Figure 5.12 shows the case for different
microlens masses. Since the minimum source radius, Rmin, depends on the microlens mass
as described by Eq. (5.39), a smaller microlens mass reduces the integration range, leading
to a smaller expected number of events. This can also be understood as follows. For
smaller microlens masses, the maximum magnification decreases due to the reduced size of
the micro-critical curve relative to the source size. Consequently, only larger sources with
higher absolute magnitudes have the possibility to be observed, and the suppression of the
high-magnification tail of the PDF is further enhanced, leading to the suppressed number
of events. When the microlens mass increases sufficiently, the expected number of events
tends to stabilize. This convergence can be understood based on the following two points.
First, the high-magnification tail of the PDF is largely independent of the microlens
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mass, aside from the suppression due to the maximum magnification. Since the number
density of microlenses scales as n⋆ ∝ M−1

⋆ and the PDF scales as dP/d log10 µ ∝ n⋆θ
2
Ein,

the effect of microlens mass on the high-magnification tail is relatively modest. Second,
sources with sufficiently small radii do not contribute significantly to high-magnification
events. Since luminosity scales as L ∝ R2 and the maximum magnification as µmax ∝
θ
1/2
EinR

−1/2 ∝ M
1/4
⋆ R−1/2, we obtain Lµmax ∝ M

1/4
⋆ R3/2, indicating that larger sources

tend to have higher magnitudes. Although smaller sources are more numerous, with
dnsource/dR ∝ R−3, they do not significantly contribute to such events. Therefore, while
increasing the microlens mass lowers the minimum source radius, thus extending the
integration range, the expected number of events does not change much. Note that the
dashed lines in Fig. 5.10 to Fig. 5.12 represent the results derived using the total PDF.
Near the center, where the average magnification exceeds the observational threshold,
the log-normal distribution dominates, resulting in a higher expected number of events.
As stated before, since Icarus exhibits a short period of peak magnification, the event is
likely associated with the high-magnification tail. Consequently, we focus on the high-
magnification tail and disregard the log-normal contribution in the following analysis.

By integrating the expected number of events shown in Fig. 5.10 to Fig. 5.12 over
the distance from the macro-critical curve, the expected total number of observed high-
magnification events can be determined. Since Icarus is the only event with a peak
magnification lasting approximately two weeks during the HST two-year observation, we
estimate 52 independent snapshots. Therefore, we multiply 52 by the prediction from
Eq. (5.45) for comparison with observational results.

Given that Icarus represents a single event observed over two years, the mean number
of Icarus-like events, N̄ , can be constrained. Assuming a Poisson distribution,

P (N) =
N̄N

N !
e−N̄ , (5.46)

the probability of observing at least one event is given by 1−e−N̄ . Thus, the mean number
of events consistent with the observation is constrained to N̄ ≥ 0.051 at the 95% CI.

By comparing the analytically estimated number of events with the observed mean
number of Icarus-like events, we can constrain the microlens parameter space. Figure 5.13
presents the 95% CI constraints on the mass and mass fraction of microlenses for various
peculiar velocities of the galaxy cluster, assuming a single microlens population with
uniform mass. A lower peculiar velocity reduces the expected number of events, leading to
tighter constraints. The results are consistent with the properties of ICL stars, suggesting
that the ICL stars alone can account for the observation of Icarus. For a fixed microlens
mass, the number of events is reduced when the microlens mass fraction is either very
small or very large. In the former case, the suppression occurs due to the absence of
microlenses in the linear regime, where the PDF scales with the microlens number density.
In the latter case, the suppression arises from the exponential damping of the PDF in the
nonlinear regime. At a fixed mass fraction, the predicted number of events grows with
increasing microlens mass and eventually saturates at sufficiently high masses, leaving the
upper bound on the microlens mass unconstrained.

Note that [136] also explores the microlens parameter space using event rates (see
Fig. 3 in their paper). However, there are two key differences between their approach and
ours. First, the influence of microlens mass on the probability of high magnification is
treated differently. In our analytic model, the dependence on microlens mass is negligible,
whereas their model scales asM−1/2

⋆ . This leads to their framework predicting higher event
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Figure 5.10: The expected number of the observed Icarus-like ultrahigh magnification
events as a function of distance from the macro-critical curve for different maximum source
radii, reflecting the different peculiar velocities of the cluster. The fiducial parameters are
Rmax = 288 R⊙, f⋆ = 6 × 10−3, and M⋆ = 0.3 M⊙, represented by the blue lines. Solid
lines correspond to calculations using the high-magnification tail of the PDF, and dashed
lines correspond to those using the total PDF. The vertical black dotted and dashed lines
show the position of the macro-critical curve and the location of Icarus, respectively. This
figure is adapted from [50].

rates for lower microlens masses. Second, their method does not account for the relation
between the source radius and the magnification threshold. As previously noted, smaller
microlenses require a larger source radius to achieve the observed apparent magnitude,
which subsequently reduces the number of predicted events. These distinctions result in
different constraints: our analysis does not set an upper limit on larger microlens masses,
while their constraints are unable to limit smaller microlens masses. As a result, we expect
our constraints to be more precise.

5.5.4 Constraint on the PBH
PBHs are a potential alternative to the standard CDM model, and they would also be
microlenses alongside the ICL stars. In this section, we use the observed number of events
to constrain the PBH parameter space while accounting for the uncertainty in the peculiar
velocity of the galaxy cluster. Here, MPBH represents the mass of PBHs, and fPBH denotes
the mass fraction of PBHs relative to the total dark matter.

The analytic model for the high-magnification tail of the PDF assumes that all mi-
crolenses have identical masses, restricting our constraints on the PBHs to the mass range
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Figure 5.11: Similar to Fig. 5.10, but for different mass fractions of microlenses. This
figure is adapted from [50].

of ICL stars, 0.1 ≲ MPBH/M⊙ ≲ 10. Additionally, considering the presence of the ICL
stars, meaningful constraints can only be obtained for fPBH ≳ fICL ≃ 0.01. This is be-
cause the suppression of the PDF in the nonlinear regime at high fPBH is unaffected by
the inclusion of ICL stars. To account for the uncertainty in peculiar velocity, we adopt
a log-normal distribution, as detailed in Sec. 5.5.1. Figure 5.14 shows our constraints on
the PBH parameters alongside existing ones from the literature. Our analysis constrains
the PBH mass fraction to fPBH ≳ 0.2 for the PBH masses between 0.1 M⊙ and 10 M⊙
at the 95% CI. While these constraints are less stringent than those from earlier studies,
they are consistent with existing results.

Note that [136] also provide constraints on the PBH parameter space in the presence
of ICL stars. They focus on peak magnifications rather than the number of events, which
differs from ours. However, for microlens masses in the range 0.1 M⊙ and 10 M⊙, our
findings are broadly consistent with theirs. An additional distinction is that our analysis
incorporates the uncertainty in peculiar velocity, whereas [136] assumes a fixed peculiar
velocity of vpec = 500 km/s.

5.6 Summary and discussions
Recently, highly magnified stars such as Icarus and Earendel have been detected within
the galaxy cluster. To understand such observations and predict similar occurrences
in future observations, it is essential to examine how the high-magnification tail of the
PDF is influenced by parameters such as the microlens mass fraction f⋆ and the average
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Figure 5.12: Similar to Fig. 5.10, but for different microlens masses. This figure is
adapted from [50].

magnification µav. To achieve this goal, we develop an analytic model for the high-
magnification tail, using ray-tracing simulations of CCtrain and Gerlumph.

Our analytical model assumes that the PDF is proportional to the number of ”in-
dependent” microlenses, whose inter-microlens distance to the nearest neighbor is larger
than the size of the micro-critical curve. We start by analyzing the case of a point source,
where there is no maximum magnification, and show that the parameter dependencies of
the PDF can be encapsulated in the parameter combination of X = f⋆κtotµav. In the lin-
ear regime, where X ≲ 1, the number of independent micro-critical curves approximately
matches the number of microlenses, causing the integrated probability to scale linearly
with X. Conversely, in the nonlinear regime, where X ≳ 1, micro-critical curves merge,
reducing the number of independent microlenses exponentially and suppressing the prob-
ability exponentially. The validity of the model for a point source is confirmed using
CCtrain simulation data. Next, we extend the analysis to the case with finite-sized
sources. Due to the averaging effect across the source size, a maximum magnification
exists, leading to the suppression of the high-magnification tail of the PDF above the
maximum magnification. To account for this, we define a suppression factor, S(r; rmax),
and find that a sigmoid function effectively captures the suppression, as verified with sim-
ulation data from Gerlumph, where we treat the source plane resolution in Gerlumph
as an effective source size. Combining these findings, we obtain the analytic model for the
high-magnification tail of the PDF described in Eq. (5.24), with Eqs. (5.16) and (5.21).

Two parameter degeneracies regarding the high-magnification tail of the PDF can be
inferred from our model. The first involves the parameter combination f⋆κtotµav, which
plays an important role in understanding the high-magnification tail. This degeneracy
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Figure 5.13: Constraints on the microlens parameters derived from the observed number
of high-magnification events during the two-year HST observation period, assuming a
single microlens component with a monochromatic mass function. The shaded regions
indicate the excluded parameter spaces at the 95% CI. The three contours represent
cases where different maximum source radii are applied, which corresponds to varying the
peculiar velocities of the galaxy cluster. The parameter space of the ICL stars is shown
in the black rectangular. This figure is taken from [50].

implies that uncertainties in the smooth lens mass distribution influence the estimation
of the mass fraction of microlenses. It may be alleviated through precise mass modeling,
leveraging many strong lensed images. The second degeneracy arises in the maximum
magnification rmax. The combination θEin/(

√
µavσW) indicates that the microlens mass is

degenerate with the source size.
One simplified assumption in our model is that all microlenses have the same mass.

In reality, the mass function of ICL stars and stellar black holes is shaped by factors
such as the initial mass function, stellar evolution, and core-collapse physics, resulting
in a diverse range of microlens masses [240, 241, 237]. Additionally, PBHs, which are
potential alternatives to CDM and contribute to microlensing effects, are also expected
to have a broad mass spectrum [123, 242] as reviewed in Sec. 2.3.2. Although our model
does not account for the scenarios with multiple microlens masses, we expect that the
PDF remains unaffected significantly in the linear regime. This is because the total
area of each magnification bin remains constant, as evident from the following relations.
The Einstein radius is proportional to the square root of the microlens mass, θEin ∝
M

1/2
⋆ , while the number density of microlenses scales inversely with mass, n⋆ ∝ M−1

⋆ .
Consequently, the total area, which scales with n⋆θ

2
Ein, does not change. In the nonlinear
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Figure 5.14: Constraints on the PBH parameters derived from the observed number of
high-magnification events in the Icarus-like system during the two-year HST observation
period, shown in black shaded region. The contribution of ICL stars is taken into account
to obtain the constraint. The other constraints are obtained by HSC [134] (blue), OGLE
[139] (brown), OGLE III, IV [140] (gray), LIGO [150] (yellow), EROS/MACHO [137, 138]
(magenta), and Planck [149] (red). All the constraints are shown at the 95% CI. This
figure is taken from [50].
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regime, however, the impact of a mass spectrum could introduce complex modifications
to the PDF. For instance, if the microlens population follows a power-law distribution
and there are many low-mass objects, we expect that the high-magnification tail of the
PDF would be suppressed. This is because the number of independent micro-critical
curves from relatively large microlens masses would be suppressed by the presence of
numerous smaller micro-critical curves around them. Conversely, some of the numerous
smaller micro-critical curves would be independent, potentially amplifying the PDF in
certain magnifications. As the typical magnification depends on the size of the micro-
critical curves as shown in Eq. (4.130), the amplification of the PDF would occur only
in the middle region of the high-magnification tail, while the very high-magnification tail
would be suppressed as stated above. Extending our analytic model to incorporate a mass
spectrum remains a subject for future research.

Another simplified assumption in our model is that microlenses are randomly and
uniformly distributed in the lens plane. The spatial scale required for this assumption
to remain valid and for the model to be accurate is several times larger than the size
of a typical micro-critical curve. However, some microlenses may form binary systems,
which introduces deviations from uniformity on scales smaller than the size of micro-
critical curves. This non-uniformity could change the number of independent micro-
critical curves. Moreover, the size and shape of the micro-critical curves are largely
influenced by their masses and relative separations of binary systems, potentially leading
to deviations in the PDF from our model predictions. We expect that the impact of
microlens spatial distribution on the magnification PDF is likely more pronounced in the
linear regime than in the nonlinear regime, where such clustering effects might play a less
significant role.

For the application of our model, we focus on the Icarus system. Specifically, we
first calculate the spatial probability distribution of highly magnified images exceeding
a given magnification threshold. To do this, we also model the PDF near the average
magnification in addition to the high-magnification tail, which we approximate using a log-
normal distribution. For each location in the vicinity of the macro-critical curve (caustic),
we compute the average magnification and determine the probability of exceeding the
observational threshold. Closer to the macro-critical curve, the probability generally
increases due to the increase in average magnification. However, if the magnification
threshold is set to a value that exceeds the maximum average magnification (achieved on
the critical curve), the behavior becomes non-trivial due to the contribution of nonlinear
regime of the high magnification tail. Next, we calculate the expected number of Icarus-
like events. In this calculation, we incorporate the relation between the source radius
and luminosity, considering the constraints on the source radius derived from the peak
magnification, source crossing time, and the luminosity of the arc. We use the high-
magnification tail of the PDF to calculate the event number, as Icarus is expected to
be an event in the high-magnification tail, given that its peak magnification lasts less
than two weeks. Assuming all microlenses have the same mass, we identify the parameter
space consistent with observations, specifically a single event with peak magnification
lasting less than two weeks during the two-year HST monitoring period. We find that the
parameter space where the number of events aligns with observations is consistent with
the properties of ICL stars. Furthermore, we impose constraints on the parameter space
for PBHs, demonstrating that a PBH mass fraction fPBH ≳ 0.2 for PBH masses ranging
from 0.1 M⊙ and 10 M⊙ is excluded at the 95% CI, due to the exponential suppression of
the event number in the nonlinear regime. This result is consistent with previous studies.
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Uncertainties in the source temperature and the peculiar velocity of the MACS J1149
cluster affect our constraints on the parameter space for microlenses and PBHs. The
temperature of Icarus is assumed to be T ≃ 12000 K, but it has an uncertainty within the
range 11000 K to 14000 K [235]. This variation affects the inferred blackbody luminosity,
which directly impacts both the absolute and apparent magnitudes. These magnitudes are
critical in determining the minimum source radius Rmin and the magnification threshold
µobsth. A lower temperature increases Rmin and µobsth, reducing the integration range and,
consequently, the expected number of highly magnified events. As a result, the parameter
space consistent with the observed number of events becomes narrower. Moreover, the as-
sumption of a uniform temperature for other source stars might not be entirely accurate.
Refining this assumption could alter the estimated event rates, potentially modifying the
constraints on the parameter space. As illustrated in Fig. 5.13, variations in the peculiar
velocity have a large impact on the excluded parameter space. More accurate measure-
ments of the peculiar velocity, especially if they align closely with the mean velocity,
would tighten the constraints and potentially expand the excluded parameter space.

While this study focuses solely on the single Icarus event, the number of observed
highly magnified stars is rapidly growing (e.g., [217]). Future analyses incorporating
additional ultrahigh magnification events are expected to provide much tighter con-
straints. For instance, in the Icarus system, if two (three) events were observed in-
stead of a single event, the excluded parameter space for PBHs would expand, ruling
out fPBH ≳ 0.08 (0.01) at the 95% CI. This demonstrates that increasing the number
of observed events could significantly expand the excluded parameter space, emphasizing
the importance of further investigations.

While analyzing the number of highly magnified events is an effective approach for
constraining the parameter space of microlenses and PBHs, the current PBH constraints
are limited to the mass range of ICL stars. This limitation arises because the analytic
model for the high-magnification tail assumes a single microlens mass. To extend the
constraints on PBHs across a broader mass range, it is crucial to investigate the high-
magnification tail of the PDF under a bimodal mass function for microlenses. Such studies
are expected to refine the parameter space for a wider variety of microlens masses, offering
insights into stellar evolution history and the fundamental nature of dark matter.



Chapter 6

Perturbation of macro-critical curves
by substructures

6.1 Introduction
In the previous chapter, we examine how the distribution of microlenses affects strong
lensing signals, specifically the event number of high-magnification events. In this chapter,
we focus on more massive substructures such as subhalos. Strong gravitational lensing
is also a powerful tool for studying substructures, where their mass distribution and
abundance are influenced by the nature of dark matter. For example, substructures within
lensing objects cause flux anomalies ratios of the strong gravitational lens images [243, 244,
245, 246, 247, 248, 249, 250, 251, 252]. In [252], seven gravitational lensing events involving
radio quasars are analyzed, yielding a mass fraction of substructures relative to the total
mass of fsub = 0.012+0.007

−0.004. This result agrees with predictions from cold dark matter
(CDM) hydrodynamical simulations within 1σ. The study also explored the thermal warm
dark matter (WDM) model, where small-scale substructures are suppressed, deriving a
lower limit for the WDM mass of mWDM > 5.58 keV/c2 at the 95% confidence interval
(CI). Other dark matter models such as self-interacting dark matter (SIDM) and fuzzy
dark matter (FDM) also affect the flux ratios in quadruple imaged quasars [114, 168].
Another example is that substructures distort the surface brightness patterns of lensed
galaxies [253, 254, 255, 256, 257]. This phenomenon also provides direct evidence of the
substructures.

A new method for searching substructures within galaxy clusters is proposed by [218],
where they focus on the astrometric perturbations of the macro-critical curves due to
substructures. In the absence of substructures, the smooth mass distribution forms a
smooth macro-critical curve, with images observed on both sides symmetrically. The
presence of substructures, however, can introduce localized distortions along these macro-
critical curves, disrupting the expected symmetry of lensing events. Since the highly
magnified individual stars have been observed [44, 216] as discussed in Chap. 5, the
detailed shape of the macro-critical curve can be determined. Fluctuations caused by
CDM subhalos with masses ranging from 106 M⊙ and 108 M⊙ are expected to perturb
the macro-critical curve by O(10) milli-arcseconds [218]. Such perturbations could be
detectable through the James Webb Space Telescope (JWST) in near-infrared bands,
requiring integration times of approximately ten hours (see also [219]).

It has been recently reported that a high-magnified huge star, likely a binary system
of two supergiant stars, called Mothra, is observed near the macro-critical curve of the
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galaxy cluster MACS0416 [45]. Unlike nearby sources, which are observed on both sides
of the macro-critical curve, the counterimage of Mothra has not yet been detected. Sev-
eral scenarios have been proposed to explain the absence of the counterimage, including
time delays, the influence of foreground objects, and local microlensing or millilensing.
They conclude that the Mothra event is likely attributed to millilensing caused by sub-
structures with masses ranging from 104 M⊙ and 2.5 × 106 M⊙, given that the peak
magnification persists for at least eight years. However, there is another possibility that
they do not consider in their analysis: the perturbation of the macro-critical curve due
to substructures.

In this chapter, we derive a general formula that relates fluctuations in macro-critical
curves to fluctuations in the surface density caused by substructures. This formula allows
us to analytically estimate the amplitude of the fluctuations of macro-critical curves using
the surface density power spectrum of the substructures. As a practical application, we
utilize our formula to examine whether the positional anomaly observed in Mothra can
be attributed to macro-critical curve distortions caused by substructures, such as CDM
subhalos, and the granular structures within the FDM halos.

This chapter is structured as follows. In Sec. 6.2, we derive a general formula that
relates fluctuations in macro-critical curves to surface density fluctuations caused by sub-
structures. In Sec. 6.3, we use this formula to propose an alternative explanation for the
observation of Mothra with CDM and FDM models. Finally, the summary and discus-
sions are presented in Sec. 6.4. This chapter is based on our recent work presented in
[46].

6.2 Fluctuations of macro-critical curves
To study the fluctuation of the macro-critical curve due to substructures, it is convenient
to start with the smooth lens potential given in Eq. (4.68),

ψ(θ) =
1

2
{κ0(θ21 + θ22) + (1− κ0)(θ

2
1 − θ22)} −

ϵ

6
θ31, (6.1)

where the origins of the lens plane and source plane are placed on the critical curve
and caustic, respectively, and an orthogonal configuration is considered, with the micro-
image train oriented perpendicular to the macro-critical curve. Again, ϵ is defined as
ϵ = −ψ,111(θ = 0), and it is inversely proportional to the Einstein radius. The Jacobian
matrix is given in Eq (4.72),

A(θ) =

(
ϵθ1 0
0 2(1− κ0)

)
, (6.2)

from which we can see that the macro-critical curve corresponds to the θ2 axis.
Now, let us examine the fluctuations of the macro-critical curve induced by substruc-

tures. When considering fluctuations at a point on the original macro-critical curve caused
by substructures, i.e., θ = (0, θ2) → θ̃ = (δθ1, θ2 + δθ2), the Jacobian matrix to linear
order is given by

A(θ̃) ≃
(
ϵδθ1 − δκ− δγ1 −δγ2

−δγ2 2(1− κ0)− δκ+ δγ1

)
, (6.3)
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with δκ, δγ1, and δγ2 representing the convergence and two shear components due to
substructures, respectively. The determinant of the Jacobian matrix is expressed as

detA = (ϵδθ1 − δκ− δγ1){2(1− κ0)− δκ+ δγ1} − δγ22
≃ 2(1− κ0)(ϵδθ1 − δκ− δγ1), (6.4)

where we ignore the higher-order terms in the second equality. Since the critical curve
is defined where the determinant of the Jacobian matrix is equal to zero, the fluctuated
macro-critical curve satisfies

δθ1 =
1

ϵ
(δκ+ δγ1). (6.5)

While the original macro-critical curve corresponds to θ1 = 0, fluctuations in the θ1
direction can be observed due to the presence of substructures.

Using the relation obtained in Eq. (6.5), we can express the auto two-dimensional
power spectrum of δθ1 as

Pδθ1 =
1

ϵ2
(Pδκ + 2Pδκδγ1 + Pδγ1) . (6.6)

Here, Pδκ, and Pδγ1 are the auto two-dimensional power spectrum of δκ and δγ1, respec-
tively, and the cross-power spectrum between δκ and δγ1 is denoted by Pδκδγ1 . Note that
the cross-power spectrum of X and Y is defined as

⟨X̃(K)Ỹ (K ′)⟩ = (2π)2δ
(2)
D (K +K ′)PXY (K), (6.7)

where X̃ and Ỹ are the Fourier transform of X and Y , K is a two-dimensional wavenum-
ber, and K = |K|. Equation (6.6) can be expressed in a simpler form. To see this, let
us start with Fourier transformation of the relation between the convergence and the lens
potential given in Eq. (4.45), and the relations between the shear components and the
lens potential given in Eqs. (4.46) and (4.47). We can obtain

κ̃(K) = −K
2

2
ψ̃(K), (6.8)

γ̃1(K) = −K
2
1 −K2

2

2
ψ̃(K) = cos(2ϕK)κ̃(K), (6.9)

γ̃2(K) = −K1K2ψ̃(K) = sin(2ϕK)κ̃(K), (6.10)

where ϕK is the polar angle of the wavenumber vector K and ψ̃ denotes the Fourier
transform of the lens potential. Therefore, the power spectrum can be expressed as

Pδγ1 = cos2(2ϕK)Pδκ, (6.11)
Pδκδγ1 = cos(2ϕK)Pδκ. (6.12)

By substituting them into Eq. (6.6), we can obtain

Pδθ1 =
1

ϵ2
(1 + 2 cos(2ϕK) + cos2(2ϕK))Pδκ. (6.13)

Furthermore, by taking the average of ϕK , we can finally express the power spectrum of
the fluctuation of the macro-critical curve as

Pδθ1 =
3

2ϵ2
Pδκ. (6.14)



120CHAPTER 6. PERTURBATION OF MACRO-CRITICAL CURVES BY SUBSTRUCTURES

Returning from Fourier space to real space, the fluctuation can be represented by

ϵ2 ⟨δθ21⟩ = ϵ2
∫
d logK K2

2π
Pδθ1(K) =

3

2

∫
d logK K2

2π
Pδκ(K) =

3

2
⟨δκ2⟩ . (6.15)

Note that the left-hand-side of Eq. (6.15) represents the ratio of the fluctuation to the size
of the macro-critical curve, ϵ2 ⟨δθ21⟩ ≃ ⟨δθ21⟩ /θ2Ein. The derivation of the simple formulae
in Eqs. (6.14) and (6.15) represents the main result of this chapter. While previous
studies have examined the relation between image position fluctuations and surface density
perturbations caused by substructures (e.g., [247]), this is the first time to derive the
formulae connecting macro-critical curve fluctuations to surface density perturbations.
These formulae provide a means to analytically estimate the variance of δθ1 or the power
spectrum Pδθ1 from the power spectrum of surface density perturbations, Pδκ.

Although Eq. (6.14) is derived under the assumption of a fully orthogonal coordinate
system, we argue that it holds rather generically. Near the fold critical curve, the tangen-
tial and radial magnifications generally exhibit the behavior µt ≃ µt0δθ

−1 and µr ≃ const.
with δθ denotes the distance from the critical curve, as shown in Sec. 4.5. Considering the
tangential magnification is given by µ−1

t = 1 − κ − γ with γ =
√
γ21 + γ22 , substructures

introduce modifications to the tangential magnification as

µ−1
t ≃ δθ

µt0
− δκ−

(
∂γ

∂γ1

)
δγ1 −

(
∂γ

∂γ2

)
δγ2 =

δθ

µt0
− δκ− γ1

γ
δγ1 −

γ2
γ
δγ2. (6.16)

Again, the perturbed macro-critical curve satisfies the condition µ−1
t = 0, we can obtain

the power spectrum expressed as

Pδθ = µ2
t0

{
Pδκ +

(
γ1
γ

)2

Pδγ1 +

(
γ2
γ

)2

Pδγ2

}
=

3µ2
t0
2
Pδκ, (6.17)

which is essentially same as Eq. (6.14) if µt0 = 1/ϵ. Note that we take an average of ϕK

in the second equality.
To validate the formula in Eq. (6.15), numerical simulations are performed using the

open-source code Glafic [222]. These simulations are carried out by Doctor Katsuya
T. Abe, the first author of [46]. Here, we briefly summarize the key findings, with addi-
tional details available in the original publication [46]. In the simulations, CDM subhalos
are distributed near the macro-critical curve following a Poisson distribution, with the
expected number determined by the subhalo mass function. Critical curves are then cal-
culated for different subhalo populations and various subhalo mass ranges. The resulting
fluctuations in the macro-critical curves are compared to the theoretical predictions. We
find that the analytic formula is consistent with the numerical results, as long as the
substructure power spectrum is not dominated by a small number of massive structures.
With these numerical results, we confirm the validity of our analytic formulae.

6.3 Application to Mothra
In this section, we utilize our analytic formula given in Eq. (6.15) to investigate whether
the position of Mothra, a highly magnified binary star at redshift z = 2.091 observed
near the macro-critical curve of the MACS J0416.1-403 cluster at z = 0.397 with the
JWST [45], can be explained by the astrometric perturbation of the macro-critical curve.
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Figure 6.1: Color image of the ultrahigh magnified binary stars Mothra and its surround-
ings observed by the JWST. The LS1, circled in yellow, is the official name of Mothra.
In the Mothra arc, there have been identified three pairs of images denoted by a, b, and
c. The dashed white line indicates the local macro-critical curve estimated by these im-
age pairs. The solid white line indicates the estimated macro-critical curve by the mass
modeling of the MACS0416 cluster. This figure is taken from [45].

Unlike neighboring sources that appear as pairs on either side of the macro-critical curve,
Mothra is observed only on the negative parity side of the macro-critical curve, and its
counterimage is missing, as illustrated in Fig. 6.1. This anomaly could be due to a local
millilensing effect from substructures that magnify the image only on the negative side
[45]. Here, we explore an alternative explanation, attributing the observed location to
macro-critical curve fluctuations induced by substructures. In this interpretation, Mothra
is treated as a phenomenon akin to Earendel [216], located precisely on the macro-critical
curve, and the absence of its counterimage is attributed to fluctuations in the macro-
critical curve. Using our analytic formula, we evaluate substructure models that can
explain the observed position of Mothra.

The parameters describing the MACS J0416.1-403 cluster are determined as follows.
We first adopt a source redshift of zs = 2.091 and a lens redshift of zℓ = 0.397. The virial
halo mass of MACS J0416.1-403 is set to be Mhh = 1.24× 1015 M⊙ [258]. Using the mass
model for MACS J0416.1-403 implemented in Glafic [222, 232], the Einstein radius for
this source redshift is estimated as θEin ≃ 24.13 arcsec. From the Einstein radius and
the halo mass, we fix the concentration parameter of the NFW profile as cvir = 7.59.
Here, we use the stellar-to-halo mass relation [259] to determine the total stellar mass,
Ms = 1.09 × 1012 M⊙, and the galaxy-size relation [74] to determine the effective radius
of the Hernquist profile, θb = 1.22 arcsec. The parameter ϵ is determined by the local
properties of the macro-critical curve near Mothra. Using the mass model by Glafic, we
estimate the tangential magnification as a function of the distance from the macro-critical
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curve, finding the relation µt ≃ 8 arcsec/δθ. From Eq. (6.17), we adopt ϵ = 1/8 arcsec−1.
In our interpretation, explaining the observed position of Mothra requires a fluctu-

ation of the macro-critical curve by approximately ≃ 0.07 arcsec, particularly toward
the negative parity side, as depicted in Fig. 6.1. Using Eq. (6.15), we can analytically
connect the required macro-critical curve fluctuation to the surface density power spec-
trum of substructures. For a fluctuation amplitude of ⟨δθ21⟩

1/2 ≃ 0.07 arcsec, we estimate
the variance in surface density perturbations ⟨δκ2⟩ ≃ 3.27 × 10−5. In the following, we
consider two specific substructure models, CDM subhalos and granular strictures within
FDM halos, and explore the possibility of explaining the observed location of Mothra.

6.3.1 CDM subhalos
First, we consider the CDM subhalos as perturbers of the macro-critical curve. Adopting
the halo model framework [260] and assuming that subhalos are distributed without spa-
tial correlation, the surface density power spectrum can be computed by integrating over
the subhalo mass function weighted by their surface density profile as [256]

Pδκ(K) =

∫ Msh,max

Msh,min

d2Nsh

dMshdS
|κ̃Msh(K)|2 dMsh, (6.18)

with Msh,min and Msh,max being the minimum and maximum masses of subhalos, respec-
tively. The surface number density of subhalos within the mass range of [Msh,Msh+dMsh]
is denoted by d2Nsh/dMshdS. This projected subhalo mass function is further described
by Eq. (2.21), where the distribution of subhalos is assumed to be proportional to the sur-
face density profile of the host halo. For the subhalo mass function, we adopt the model
presented in [74]. The Fourier transform of the convergence is denoted by κ̃Msh(K), which
can be expressed with a subhalo mass as

κ̃Msh(K) =
Msh

Σcr
ũMsh(k = (Kx, Ky, 0)), (6.19)

where Σcr is the critical surface density given in Eq. (4.37), and ũMsh(k) is the Fourier
transform of the normalized mass function. It can be calculated by

ũMsh(k) =

∫ rvir

0

4πr2

Msh

sin kr
kr

ρMsh(r) dr, (6.20)

where ρMsh(r) denotes the subhalo density profile. Here, we adopt the Navarro-Frenk-
White (NFW) profile for the subhalo density profile, leading to the expression of ũMsh(k)
as [261],

ũMsh(k) = f(cvir)

{
sin(krvir) {Si(krvir(1 + cvir))− Si(krvir)}

+ cos(krvir) {Ci(krvir(1 + cvir))− Ci(krvir)} −
sin(krvircvir)

krvir(1 + cvir)

}
, (6.21)

where Si(X) =
∫ X

0
dt sin(t)/t is the sine integral function and Ci(X) = −

∫∞
X
dt cos(t)/t is

the cosine integral function. The function f(cvir) is the same function given in Eq. (2.8).
By substituting Eq. (6.18) into Eq. (6.15), we can estimate the mass range of CDM

subhalos (Msh,min, Msh,max) required to reproduce ⟨δκ2⟩ ≃ 3.27 × 10−5. Note that the
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Figure 6.2: Contours of fluctuations of the macro-critical curve ⟨δθ21⟩
1/2 in the units of

arcsec, as a function of maximum subhalo mass Msh,max and mass ratio Msh,min/Msh,max,
for the Mothra-like lensing system. The red cross shows the model that we calculate in
detail to interpret the anomalous position of Mothra (see Fig. 6.3). This calculation is
conducted by the first author of [46]. This figure is taken from [46].

minimum mass of CDM subhalos is predicted to be theoretically very small, for instance,
10−12 − 10−3 M⊙ in the case of supersymmetric neutralinos [262, 263, 264, 265]. There-
fore, the Msh,min/Msh,max ratio can be effectively considered as zero. From Fig. 6.2, we
find that the maximum subhalo mass Msh,max required to explain the Mothra-like lensing
event is less than 109 M⊙/h for such small Msh,min/Msh,max. This is consistent with the
absence of any visible galaxy near Mothra. Consequently, we conclude that CDM subha-
los, particularly those with Msh,max ≃ 108−9 M⊙/h might provide a plausible explanation
for the observed location of Mothra.

While the observed location of Mothra can be attributed to perturbations in the
macro-critical curve caused by CDM subhalos with a maximum mass of 109 M⊙/h, such
subhalos could also influence the magnification ratios of multiple image pairs of nearby
sources on either side of the critical curve. Here, we specifically examine the impact on the
magnification ratios of the image pair c and c′ shown in Fig. 6.1 using Glafic. Based on
the configuration of the multiple image pairs, the magnification ratio between the images
c and c′ is expected to be approximately 1.22 [45]. We distribute the CDM subhalos with
the mass range between (Msh,min,Msh,max) = (5 × 107 M⊙/h, 10

9 M⊙/h) in ten different
populations of subhalos, and obtain two thousand parameter sets of (δθ1, µc, µc′). The
distribution of the parameter sets is shown in Fig. 6.3. When |δθ1| ≃ 0.2 arcsec, the
perturbed critical curve approaches the location of image c or c′, resulting in a strong
correlation between δθ1 and the magnification ratio µc/µc′ . However, for smaller pertur-
bations, specifically δθ1 ≲ 0.1 arcsec, this correlation becomes much weaker. This suggests
that the Mothra lens system could be reproduced while preserving the observed magni-
fication ratio of µc/µc′ ≃ 1.22. It is important to note that subhalos can also introduce
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   δθ1[′ ′ ]

Figure 6.3: The correlation between δθ1 and the magnification ratio between c and c′.
The horizontal red dotted line represents the magnification ratio of the images c and c′,
which is predicted to be about 1.22. The vertical red dotted line shows δθ1 to explain
the observed location of Mothra with the fluctuations of the macro-critical curve. This
calculation is conducted by the first author of [46]. This figure is taken from [46].

positional perturbations to other multiple image pairs. Ensuring that these perturbations
do not significantly alter the observed positions of those images is crucial for confirming
the viability of the scenario. However, further investigation is beyond the scope of this
chapter and is left for future studies.

6.3.2 Granular structures in FDM halos
Due to the wave nature of FDM, the granular structures, which originate from the inter-
ference pattern, exist in FDM halos, as discussed in Chap. 3. The characteristic size of
each granular structure corresponds to the de Broglie wavelength. The surface density
perturbations from these granular features have been analytically explored in [164] as
reviewed in Sec. 3.6. In their calculations, they assume that the granular structures are
uniformly and randomly distributed with a number density ⟨n⟩ = 1/Vc, where Vc repre-
sents the constant volume of an individual granular structure. The mass of each granular
structure is determined by the local NFW density profile and the internal density profile
is modeled as Gaussian.

Without baryon components, the surface density power spectrum is expressed by
Eq. (3.116). Substituting the volume of the granular structure given by Eq. (3.57), the
power spectrum can be represented by

Pδκ,FDMonly(K) =
π
∫
dz ρ2NFW(r)

6Σ2
cr

λ3dB exp
(
−λ

2
dBK

2

4

)
, (6.22)

with λdB = h/mv is the de Broglie wavelength where the halo velocity dispersion is set to
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a constant value determined by Eq. (3.107). Then, the perturbation of the macro-critical
curve in FDM halos can be estimated using Eqs. (6.14) and (6.15), as

⟨δθ21,FDMonly⟩ =
λdB

4ϵ2

∫
dz ρ2NFW(r)

Σ2
cr

. (6.23)

Given that the de Broglie wavelength scales inversely with the FDM particle mass m, the
simple relation of ⟨δθ2x,FDMonly⟩ ∝ 1/m satisfies. Equation (6.23) can be expressed in an
alternative form,

ϵ2 ⟨δθ21,FDMonly⟩ =
λdB

4rNFW(x)
κ2FDM(x), (6.24)

where rNFW(x) is the effective radius in FDM halos at the position of x = |x| introduced
in Eq. (3.115). Here, κFDM(x) is the convergence due to the overall FDM density profile,
given as

κFDM(x) =
1

Σcr

∫
dz ρNFW(r). (6.25)

From Eq. (6.24), the fluctuation in the macro-critical curve is proportional to the conver-
gence and inversely proportional to the square root of the number of granular structures
along the effective radius.

When baryonic components are smoothly distributed, the surface density power spec-
trum takes the form given in Eq. (3.117). Compared to the FDM-only case described by
Eq. (6.22), it is reduced by a factor of {ΣNFW/(ΣNFW+ΣHern)}2, reflecting the contribution
of baryonic matter to the overall density distribution. Consequently, the perturbation in
the critical curve can be expressed as

ϵ2 ⟨δθ21,FDMbaryon⟩ =
λdB

4rNFW

(
κFDM

κtot

)2

κ2tot, (6.26)

where κtot = κFDM + κbaryon denotes the total convergence. Assuming the baryon mass
distribution follows the Hernquist profile, κbaryon is expressed by

κbaryon(x) =
1

Σcr

∫
dz ρHern(r). (6.27)

It is evident that the presence of a smooth baryon profile suppresses fluctuations in the
macro-critical curves.

Using these relations, we estimate the perturbation of the macro-critical curve in the
Mothra system. Figure 6.4 shows the relation between the FDM mass and the fluctuation
in the macro-critical curve due to the granular structures. We find that the FDM mass of
m ≃ 5.5 × 10−25 eV/c2 is required to account for the observed position of Mothra. This
value is much lower than the typical FDM mass range of m = 10−23-10−21 eV/c2. There
are two reasons why such a small FDM mass is necessary to produce a sizable effect.
First, the de Broglie wavelength is relatively short due to the high-velocity dispersion
in galaxy clusters. Second, the longer line-of-sight projection in galaxy clusters leads
to a more pronounced averaging effect. When the FDM mass is small, each granular
structure becomes larger, resulting in greater fluctuations. However, the preferred mass of
m ≃ 5.5×10−25 eV/c2 is challenged by several constraints, including those from Lyman-α
forest [182, 183, 184, 185], which suggests that scenarios in which all dark matter consists
entirely of FDM may be excluded. Further exploration of hybrid dark matter models (e.g.,
FDM+CDM) would be beneficial, where we expect that our formalism is also applicable.
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Figure 6.4: The FDM mass dependence of the fluctuation of the macro-critical curve
in the Mothra-like system. The horizontal dotted line shows the fluctuation needed to
explain the observed offset of Mothra. This figure is taken from [46].
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6.4 Summary and discussions
Astrometric perturbations of critical curves in strong lensing systems provide a powerful
tool for investigating small-scale substructures. A smooth mass distribution results in
symmetric multiple images around macro-critical curves, however, the presence of sub-
structures introduces small-scale fluctuations in the macro-critical curves, breaking the
symmetry of the lensing configuration. In this chapter, we derive general formulae for how
the surface density fluctuations induced by substructures affect the shape of the macro-
critical curve. The formula, presented in Eq. (6.15), enables the analytic estimation of
the fluctuation amplitude from the surface density power spectrum of substructures. To
validate this formula, we conduct numerical tests using the open-source software Glafic.
We find that the formula is accurate, provided that substructures are not dominated by
a few very massive structures.

To demonstrate the application of our analytic formula, we examine the possibility
that the recently observed extremely magnified binary star Mothra, whose counterimage
has not been detected, can be explained by the fluctuation of the macro-critical curve
caused by substructures. Our analysis reveals that CDM subhalos with masses between
5 × 107 M⊙/h and 109 M⊙/h can successfully account for the anomalous position of
Mothra, as well as the magnification ratio of the nearby image pair. Additionally, we find
that FDM with a very small mass of ≲ 10−24 eV/c2 would be required to explain the
observed offset of Mothra.

While both CDM subhalos and granular structures within FDM halos could potentially
explain the observed location of Mothra, an increase in the number of such events would
allow us to estimate the distribution function of the fluctuations (or the power spectrum
in Fourier space), enabling a direct distinction between the CDM and FDM scenarios.
Naively, since granular structures are distributed throughout the halo and massive CDM
subhalos inducing large fluctuations are less abundant, fluctuations are expected to occur
more frequently with FDM granular structures than with CDM subhalos. Therefore, it is
crucial to observe more highly magnified stars, which can, for example, be achieved with
the JWST, and to determine the detailed shape of the critical curve.

The analytic relation between fluctuations in the macro-critical curve and those in the
surface mass density is expected to become a powerful tool when the shape of the critical
curve can be measured in more detail. This will contribute to a deeper understanding of
the nature of dark matter.
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Chapter 7

Galaxy-galaxy strong lensing
cross-section with FDM model

7.1 Introduction
The galaxy-galaxy strong lensing (GGSL) cross-section in galaxy clusters has recently
been identified as one of the discrepancies between observation and the theoretical predic-
tions with the standard Λ Cold Dark Matter (ΛCDM) model (see Fig. 7.1) [266, 267, 268].
The cross-section refers to the total area on the source plane enclosed by the secondary
caustics, which are produced by substructures such as subhalos and galaxies. Observa-
tions show that the GGSL cross-section is approximately an order of magnitude larger
than what is predicted by hydrodynamic ΛCDM simulations. This discrepancy could sug-
gest that the actual mass distribution within substructures inside galaxy clusters is more
concentrated than that of the CDM subhalos. This is in contrast to other small-scale
issues discussed in Sec. 2.2, where the problem arises from an overdense mass distribution
in the CDM model.

To address the small-scale issues, one potential approach is to incorporate baryonic
physics and/or explore alternative dark matter models. These modifications could alter
the mass distribution within halos and subhalos, as discussed in Sec. 2.3. Several investi-
gations have already been conducted to determine whether such changes could resolve the
GGSL cross-section discrepancy. The impact of baryonic physics on the cross-section has
been examined through hydrodynamical simulations by [269] and [270]. Their findings
suggest that subhalos with masses Msh ≳ 1011 M⊙ might become more compact, which
increases the cross-section, especially with low active galactic nuclei (AGN) efficiencies.
However, these simulated subhalos contain more stellar components than are observed,
making it unlikely that the discrepancy can be resolved solely by adjusting AGN physics
[271]. In [272], they explore the effects of mass redistribution by modifying the concentra-
tion and tidal radius of CDM subhalos since the observations only provide constraints on
the internal total mass, finding that tension persists within the CDM framework. Mean-
while, [273] investigate the GGSL cross-section within the context of the self-interacting
dark matter (SIDM) model [31]. They show that the core-collapsed SIDM subhalos, with
an inner density profile of ρ ∝ r−γ with a power-law index γ > 2.5, could help mitigate
the discrepancy. However, further research is needed, as they do not consider factors such
as the fraction of core-collapsed objects and the SIDM subhalo mass function. Additional
detailed investigations of the GGSL cross-section within the SIDM framework would be
possible using the recently developed simulations [274].

129
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As an alternative to the CDM model, we investigate the fuzzy dark matter (FDM)
model [34] and its potential impact on the GGSL cross-section. As discussed in Chap. 3,
FDM is a scalar particle with a mass range of approximately m ≃ 10−24−10−20 eV/c2, and
one possible candidate for FDM in particle physics is the axion-like particle (ALP), which
appears in string theory [153]. A notable characteristic of FDM halos is the presence of
a soliton core at the center, surrounded by a Navarro-Frenk-White (NFW) profile. This
feature has been confirmed by cosmological FDM simulations [160, 163, 161]. The soliton
core corresponds to the lowest energy state of the FDM, and its density profile can be
expressed by the ground state solution to the Schrödinger-Poisson (SP) equation. The
soliton core is characterized by two key parameters: the core mass (or core radius) and
the FDM mass. For a given halo mass, the core mass can be uniquely determined by the
core-halo mass relation [171, 162, 176, 47], as shown in Sec. 3.4. For a given core mass,
the central density of the core increases, and the core radius shrinks, as the FDM mass
becomes larger. Thus, it is expected that the GGSL cross-section would be influenced by
the FDM mass, which is the basis for our investigation. By exploring the dependency of
the GGSL cross-section on the FDM mass, we aim to determine whether the FDM model
can yield a sufficiently large GGSL cross-section and identify the preferred mass range for
FDM particles.

In this chapter, we begin by developing an analytic model to calculate the cross-section
of a single FDM subhalo within a host halo. We examine how the cross-section depends
on factors such as the FDM mass, the subhalo mass, and the distance from the host
halo center. Next, we calculate the total cross-section by integrating the cross-section
of an individual subhalo over both subhalo mass and distance, assuming a subhalo mass
function. Additionally, we take into account the baryon distribution using a stellar-to-
halo mass relation and investigate the impact of the baryon distribution on the overall
cross-section.

This chapter is organized as follows. In Sec. 7.2, we present our analytic model for
the GGSL cross-sections of FDM subhalos. In Sec. 7.3, we investigate the impact of
the baryonic distribution and compare our analytic predictions with the observational
result. Finally, we summarize our findings and provide discussions in Sec. 7.4. This
chapter is based on our recent work presented in [49]. Throughout this chapter, we use
the concentration-halo mass relation for CDM halos presented in [55] with the suppression
below the half-mode mass for FDM halos modeled by Eq. (3.68). The expression of the
FDM density profile is given in Eq. (3.104), where we apply the core-halo mass relation
given in Eq. (3.98) and the soliton core density profile provided in Eq. (3.53).

7.2 GGSL cross-section with FDM subhalos
In this section, we present our model for the GGSL cross-section of FDM subhalos. We
assume a total host halo mass of Mhh = 1015 M⊙, with the host halo density profile
following the NFW profile. Since the core radius of the host halo is sufficiently small due
to the large velocity dispersion, we neglect the influence of the soliton core on the overall
profile of the host halo. For simplicity, we consider spherical host and subhalos. The
redshifts of the source and lens planes are set to zs = 2.0 and zℓ = 0.5, respectively. With
these parameters, the critical curve of the host halo has a size of approximately 14 arcsec.
We begin by presenting the model for the GGSL cross-section of a single FDM subhalo
in Sec. 7.2.1. Then in Sec. 7.2.2, we calculate the total cross-section contributed by all
FDM subhalos by considering the subhalo mass function.
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Figure 7.1: The GGSL probability in galaxy clusters between the observational results
and the ΛCDM predictions as a function of the source redshift. The GGSL probability is
defined by the total area enclosed by the secondary caustics divided by the area sampled
by the cluster mass reconstruction mapped onto the source plane. The mean GGSL
probability for eleven galaxy cluster samples is shown with a solid dark blue line, while
the light blue dashdot and violet dotted lines plot the computed GGSL probability for
the Hubble Frontier Field (HFF) [213] and Cluster Lensing and Supernova Survey with
Hubble (CLASH) Gold [275, 276] samples, respectively. The orange dashed line shows the
median GGSL probability measured from ΛCDM simulations. The colored bands show
the 99.9% confidence interval (CI) for each dataset. The discrepancy between observations
and simulations of an order of magnitude can be identified. This figure is taken from [266].

7.2.1 Single FDM subhalo

In this subsection, we examine the cross-section of a single FDM subhalo within the host
halo. To calculate the cross-section, we perform numerical simulations using the same
code as that employed in [266]. First, we generate convergence maps (projected density
fields) and compute the deflection angle using ray-tracing simulations. By incorporating
the deflection angle contribution from the host halo, we determine the secondary-critical
curve associated with the subhalos.

In Fig. 7.2, we show the convergence maps of both CDM and FDM subhalos with
different FDM masses, positioned 20 arcseconds from the center of the host halo. The core
radius, denoted by red lines, shrinks as the FDM mass increases, as can be estimated from
Eq. (3.55). The secondary-critical curves are indicated by white lines. As expected, the
size of the critical curve varies with the FDM mass. In Fig. 7.3, we plot the corresponding
GGSL cross-sections. We observe that for sufficiently small FDM masses, the cross-section
is zero, as the central density of the soliton core is not high enough to generate the critical
curve; the convergence is less than one at the center (see Sec. 4.4). For large FDM masses,
the cross-section approaches the same value as that of the CDM subhalo, since the effect
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Figure 7.2: The convergence maps and secondary-critical curves around the position of
the subhalos in the CDM model and the FDM model with different FDM masses. The
location of subhalos is 20 arcsec from the center of the host halo, (x, y) = (−20, 0), where
the unit is arcsec. The masses of host halo and subhalos are set to 1015 M⊙ and 1011 M⊙,
respectively. The redshifts of the source plane and lens plane are set to zs = 2.0 and
zl = 0.5, respectively. The secondary-critical curves are shown in white lines and the core
radii of the FDM subhalos are shown in red lines. Note that the box sizes are different
for the cases with the FDM mass m = 5.6 × 10−24 eV/c2 and 1.0 × 10−23 eV/c2. This
figure is taken from [49].

of the soliton core becomes negligible and the cylinder mass within critical curves is the
same. Interestingly, for FDM masses between these extremes, where the core radii are
comparable to the size of the critical curves, the cross-section exceeds that of the CDM
case. The peak cross-section is roughly an order of magnitude larger than that for the
CDM subhalo, suggesting that the GGSL discrepancy could be alleviated by considering
the FDM model.

We find that the GGSL cross-section of a single FDM subhalo can be accurately
represented by the following analytic formula,

σFDM(m;Msh, dsh) =
1

2

{
1 + tanh

(
log10m− log10mpeak

∆log10 m

)}
×

{
σpeak

FDM

(
m

mpeak

)−1

+ σCDM(Msh, dsh)

}
. (7.1)

We define the peak cross-section as σpeak
FDM, which can be seen in Fig. 7.3, and denote the

corresponding FDM mass as mpeak. The first term reflects that the cross-section becomes
zero for FDM masses below the peak value due to the core density profile being too shallow.
The second term represents the reduction in the cross-section, which scales inversely with
the FDM mass for values above mpeak, eventually converging to the cross-section of a CDM
subhalo. For FDM masses m ≳ mpeak, the core radius becomes smaller than the Einstein
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Figure 7.3: The GGSL cross-section of a single FDM subhalo in a galaxy cluster as a
function of the FDM mass. The parameters are the same as Fig. 7.2. The cross-section of
the CDM subhalo is shown in the horizontal dashed line. The red line shows the fitting
result of our analytic model where the fitting parameters are mpeak = 10−22.3 eV/c2,
σpeak

FDM = 0.005 arcsec2, and ∆log10 m = 0.23. This figure is taken from [49].

radius, xc ≲ xEin, where x represents the two-dimensional coordinates on the projected
plane. Considering the relation σFDM ∝ x2Ein ∝ M(< xEin) ≃ Mc + MNFW(< xEin),
where M(< x) is the cylinder mass, and the dependence of the core mass on the FDM
mass, Mc ∝ m−1, we can understand how the cross-section varies with the FDM mass as
described in Eq. (7.1). In Fig. 7.3, we plot the fitting result of our analytic formula in the
red solid line, which accurately captures the numerical results.

The peak cross-section and the corresponding peak FDM mass depend on two key
parameters: the subhalo mass Msh and the distance from the host center dsh. As indicated
by Fig. 7.2, the peak cross-section occurs when the core radius approximately matches
the size of the critical curve, roughly corresponding to the Einstein radius (ignoring the
expansion due to the smooth background mass distribution), xc ≃ xEin. In this scenario,
the cylinder mass within the critical curve can be approximated by the core mass, xEin ∝
M

1/2
c . Using the relations xc = rc ∝ M

−1/3
sh m−1 and Mc ∝ M

1/3
sh m−1, the dependence of

the peak FDM mass on these parameters can be derived as

mpeak(Msh, dsh) ∝M−1
sh . (7.2)

It is important to note that the size of the critical curve is influenced by the position of the
subhalo due to the contribution of the host halo. While this could affect the peak FDM
mass, numerical results show negligible dependence on the distance. The dependence
of the peak cross-section on the subhalo mass can be estimated as σpeak

FDM ∝ x2c,peak ∝
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M
−2/3
sh m−2

peak ∝ M
4/3
sh . For a fixed subhalo mass, we numerically find that the peak cross-

section scales with distance as σpeak
FDM ∝ d−2.3

sh . By combining these dependencies, the peak
cross-section depends on the subhalo mass and its distance from the host halo center as

σpeak
FDM(Msh, dsh) ∝M

4
3

shd
−2.3
sh . (7.3)

As expected, subhalos located closer to the macro-critical curve or with greater mass
contribute to larger cross-sections. It is important to note that subhalos with secondary-
critical curves exceeding 3 arcseconds are typically excluded from consideration, as such
large critical curves are not observed [266]. The smoothing parameter ∆log10 m in Eq. (7.1)
is on the order of 0.1 and does not exhibit any clear dependence on either parameter.

For a host halo modeled with a spherical NFW profile and a mass of Mhh = 1015 M⊙,
with source and lens redshifts set to zs = 2.0 and zl = 0.5, respectively, we numerically
obtain the coefficients for the peak cross-section and the corresponding peak FDM mass.
With the coefficients, they can be represented as

σpeak
FDM(Msh, dsh) ≃ 5× 10−3 arcsec2

(
Msh

1011 M⊙

) 4
3
(

dsh

20 arcsec

)−2.3

, (7.4)

mpeak(Msh) ≃ 1× 10−22 eV/c2
(

Msh

1011 M⊙

)−1

. (7.5)

We also investigate the empirical relation for the cross-section of a single CDM subhalo,
expressing it as a function of the subhalo mass and its distance from the center of the
host halo. As a result, the following relationship is obtained,

σCDM(Msh, dsh) ≃ 1× 10−4 arcsec2
(

Msh

1011 M⊙

)2.3(
dsh

20 arcsec

)−12

. (7.6)

The coefficients in Eqs. (7.4), (7.5), and (7.6) are influenced by the mass and density
profile of the host halo, as well as the redshifts of the source and lens planes. These
parameters are set constant in this chapter.

7.2.2 Total GGSL cross-section
With the analytic expression for the cross-section of a single CDM and FDM subhalo,
accounting for variations in FDM mass, subhalo mass, and distance from the host halo
center, we can now compute the total cross-section contributed by all subhalos within the
host halo.

The total cross-section is derived by multiplying the subhalo mass function, discussed
in Sec. 2.1.3 for CDM subhalos and Sec. 3.5 for FDM subhalos, with the single subhalo
cross-section and integrating over both the subhalo mass and distance from the host halo
center. For FDM subhalos, the resulting total cross-section depends on the FDM mass,

σtot
FDM(m) =

Nsh∑
i=0

σFDM(m;Msh, dsh)

=

∫ Msh,max

Msh,min

dMsh

∫ dsh,max

dsh,min

ddsh
d2Nsh

dMshddsh

∣∣∣∣
FDM

σFDM(m;Msh, dsh). (7.7)
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For CDM subhalos, it can be expressed as

σtot
CDM =

∫ Msh,max

Msh,min

dMsh

∫ dsh,max

dsh,min

ddsh
d2Nsh

dMshddsh

∣∣∣∣
CDM

σCDM(Msh, dsh). (7.8)

In Fig. 7.4, we show the total cross-section of FDM subhalos normalized by that of
CDM subhalos as a function of the FDM mass. The subhalo mass range is set between
Msh,min = 1010 M⊙ and Msh,max = 1012 M⊙. Although there is a large number of subhalos
with lower masses, Msh ≲ 1010 M⊙, their cross-sections are relatively small, and they
do not significantly contribute to the total cross-section. There are two reasons why
the maximum subhalo mass is set to 1012 M⊙. First, the number of high-mass subhalos
is small, and second, these subhalos would produce critical curves larger than what we
observe, as discussed in Sec. 7.2.1. We also choose the minimum and maximum distances
from the host halo center to be dsh,min = 15 arcsec and dsh,max = 100 arcsec, respectively.
The minimum distance ensures that subhalos are located outside the macro-critical curve
of the host halo. We find that the total cross-section is nearly zero for FDM masses below
m ≲ 10−23 eV/c2. Interestingly, for m ≳ 10−23 eV/c2, the total cross-section exceeds
that of the CDM case. The peak ratio of the total cross-section from FDM to CDM
subhalos is approximately three when the FDM mass is m ≃ 10−22 eV/c2. As the FDM
mass increases further, in the CDM limit, the total cross-section ratio approaches one, as
expected. While FDM subhalos can produce a larger cross-section than CDM subhalos,
no FDM mass is capable of generating a cross-section large enough to match the observed
value, which is about an order of magnitude greater than that of CDM subhalos.

7.3 Effects of baryons
Cluster galaxies contain baryonic components, which we have previously neglected. In
this section, we consider the impact of the baryon distribution on both the single and total
cross-sections. We include the baryons without modifying the dark matter distribution,
i.e., we ignore the back reaction of the dark matter distribution caused by the presence of
baryons. This is because we still do not understand how the dark matter density profile
is affected by the presence of central stellar distribution, particularly in the case of FDM.
In Sec. 7.4, we discuss how the dark matter profile is changed and its impact on the
cross-section. Although the total mass slightly exceeds 1015 M⊙ due to the inclusion of
the baryons, this increase is negligible since the baryon mass contributes only about 1%
of the total dark matter mass. We assume the baryon distribution follows the Hernquist
profile [78] as summarized in Sec. 2.1.4. To determine the Hernquist profile for a given
halo mass, we use the stellar-to-halo mass relation [80] and the relation between the
effective radius of the Hernwuist profile and the virial radius of the host subhalo, given
by re = 0.03rvir [277, 278].

We examine how the inclusion of the baryon profile affects the cross-section of each
subhalo. In Fig. 7.5, we show the convergence maps and critical curves, using the same
setup as in Fig. 7.2. The addition of the baryons results in an increase in the size of the
secondary-critical curves around the subhalos. In Fig. 7.6, we show the corresponding
cross-sections. It is evident that the ratio of the peak FDM cross-section to the CDM
cross-section decreases when the baryon profile is included, compared to the case without
baryons.

Although the coefficients and power-law indices are slightly altered, we find that the
analytic model presented in Sec. 7.2.1 still provides a good description of the cross-section,
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Figure 7.4: The ratio of the total GGSL cross-sections of the CDM and FDM subhalos
as a function of the FDM mass. Host halo mass and the redshifts of the source and lens
plane are the same as Fig. 7.2. The minimum and maximum subhalo masses are set to
1010 M⊙ and 1012 M⊙, respectively. We set the minimum and maximum distances to 15
arcsec and 100 arcsec, respectively. This figure is taken from [49].

even when baryon components are included, as shown in Fig. 7.6. The peak cross-section
and the corresponding peak FDM mass can be represented by

σpeak
FDM(Msh, dsh) ≃ 7× 10−3 arcsec2

(
Msh

1011 M⊙

)1.3(
dsh

20 arcsec

)−1.7

, (7.9)

mpeak(Msh) ≃ 8× 10−23 eV/c2
(

Msh

1011 M⊙

)−1

, (7.10)

and the cross-section for a single CDM subhalo is

σCDM(Msh, dsh) ≃ 1× 10−3 arcsec2
(

Msh

1011 M⊙

)2.0(
dsh

20 arcsec

)−2.3

. (7.11)

The coefficient of the cross-section increases with the inclusion of the baryon profile.
Meanwhile, the peak FDM mass is slightly smaller compared to the case without baryons.
This occurs because the size of the critical curve expands due to the baryon distribution,
requiring a smaller FDM mass for the same core size.

Taking into account the subhalo mass function, we can compute the total cross-section
as done in Sec. 7.2.2. In Fig. 7.7, we plot the ratio of the total cross-section between FDM
and CDM subhalos as a function of the FDM mass. The presence of the baryon profile
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Figure 7.5: Similar to Fig. 7.2, but including the baryon distribution. The baryon
distribution is determined by the Hernquist profile where we use the stellar-to-halo mass
relation presented in [80] and the relation re = 0.03rvir. This figure is taken from [49].

results in a suppression of the ratio compared to the case without baryons. The largest
effect occurs when the FDM mass is approximately 10−22 eV/c2, with the ratio being less
than two. Since the observations indicate that the total cross-section is about ten times
larger than the CDM predictions, it might suggest that the FDM model, regardless of
the mass, cannot fully explain the observational results. However, the assumptions of
spherical host and subhalos, as well as the neglect of modifications of the dark matter
profile due to the presence of baryons, should be revisited in future studies. These factors
could potentially increase the cross-section.

7.4 Summary and discussions
A discrepancy regarding the GGSL cross-section in galaxy clusters has been identified
between observations and the predictions based on the ΛCDM model, with the former
being an order of magnitude larger. One potential solution to this discrepancy is to
consider the FDM model, which is a viable alternative to CDM. In this chapter, we
have developed an analytic model to describe the GGSL cross-section of FDM subhalos
and compared it to that of CDM subhalos using numerical simulations. This analysis
assumes spherical symmetry for both the host halo and the subhalos. The host halo mass
distribution is modeled by the NFW profile, with a fixed mass of Mhh = 1015 M⊙, while
the source and lens redshifts are set to zs = 2.0 and zℓ = 0.5, respectively.

We first consider a single subhalo with mass Msh, located at a distance dsh from
the center of the host halo. When the FDM mass is sufficiently small, the core density
is shallow, and no critical curves form around the subhalo, resulting in a zero cross-
section. As the FDM mass increases, the core radius decreases, and the central core density
increases. The cross-section reaches its maximum when the core radius is approximately
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Figure 7.6: Similar to Fig. 7.3, but including the baryon distribution. The red line
shows the fitting result of our analytic model with the fitting parameters being mpeak =

10−22.4 eV/c2, σpeak
FDM = 0.007 arcsec2, and ∆log10 m = 0.31. This figure is taken from [49].

equal to the size of the critical curve. This is because the enclosed mass within the soliton
core radius exceeds that of the NFW profile within the same radius. For larger FDM
masses, the cross-section scales as σFDM ∝ m−1, approaching to the CDM case. The
analytic model in Eq. 7.1 accurately describes the dependence of the single subhalo cross-
section on the FDM mass. Additionally, we investigate how the two key quantities in the
analytic model, the peak FDM mass mpeak and the peak cross-section σpeak

FDM, depend on
the subhalo mass Msh and its distance from the host halo center dsh.

The total cross-section, which is the sum of the cross-sections of all subhalos, is ob-
tained by integrating the cross-section for each subhalo over both Msh and dsh under the
consideration of the subhalo mass function. In this study, we assume that the spatial
distribution of the subhalos follows the mass distribution of the host halo. Our findings
show that the FDM mass around m ≃ 10−22 eV/c2 results in the largest cross-section,
which is several times larger than the total cross-section produced by CDM subhalos.

Subhalos with mass Msh ≳ 1010 M⊙ contain a sufficient amount of baryon due to deep
gravitational potential. Therefore, we investigate the effect of the baryon distribution on
both the single and total cross-sections. We assume that the baryon distribution follows
the Hernquist profile, with the total mass derived from the stellar-to-halo mass relation.
While it is likely that the presence of stars in the central regions of galaxies would alter
the dark matter distribution, we neglect this effect and simply add the baryon profile to
the underlying dark matter density profile. This decision is made due to the current lack
of an analytical description of how baryons modify the dark matter profile. As expected,
the presence of baryons increases both the single and total cross-sections. The FDM
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Figure 7.7: Similar to Fig. 7.4, but including the baryon contribution. This figure is
taken from [49].
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mass dependence of the single cross-section remains similar to the case without baryons.
However, the ratio of the peak cross-section for FDM subhalos to that of CDM subhalos
is reduced in the presence of baryons. This suppression is also reflected in the total cross-
section, where the peak is about 1.8 times larger than the total cross-section for CDM
subhalos. Given that the observed cross-section is approximately ten times larger than
the CDM prediction, it indicates that the FDM model, regardless of mass, cannot produce
a cross-section large enough to match the observations from cluster galaxies.

One key assumption that we need to discuss is the sphericity of the host and subhalos.
If we take into account the ellipticity of the host and subhalos, we expect that the size
of the critical curve would increase due to the effect of the enhanced shear. When the
ellipticity is less than one, the peak FDM mass is expected to decrease to align the core
radius with the enlarged critical curve. To obtain a reliable constraint on the FDM mass,
further detailed modeling is required, including factors such as ellipticity. Additionally,
precise modeling for the baryon distribution within subhalos, accurate redshifts for both
the source and lens planes, and the detailed mass distribution of the host halo would
provide robust constraints on the FDM mass.

An additional assumption that should be discussed is the neglect of any modifications
of the dark matter profile in the presence of baryons. In this study, we simply add the
baryon component because there is still uncertainty about how the dark matter density
profile is altered when baryons are present. In the CDM case, this could be modeled by
considering adiabatic contraction [279, 278]. In the FDM model, while the soliton core is
known to be described by the ground state solution of the SP equation in the presence of a
baryon potential, an additional condition, such as the core-halo mass relation, is required
to determine the central density of the soliton core for a given halo mass, which has not
yet been extensively explored. To the best of our knowledge, [280] is the only study that
conducts a zoom-in simulation of a single FDM halo with baryon physics, finding that
the soliton core becomes denser and the core radius decreases. We expect that the peak
FDM mass would be smaller than what we find in this study, and the peak cross-section
would be larger, potentially alleviating the discrepancy.

By refining our model and incorporating more realistic extensions specific to each
galaxy cluster, we expect to assess the validity of the FDM model more rigorously. Since
the cross-section varies with the FDM mass, a more detailed investigation could help place
better constraints on the FDM mass. Additionally, because the soliton core influences
other strong gravitational lensing phenomena, such as flux anomalies and time delays,
our model could be extended to investigate these effects as well. We hope that our work
in this chapter will be an important step toward a deeper understanding of the nature of
dark matter.



Chapter 8

Conclusions

Understanding the nature of dark matter remains one of the most profound challenges
in cosmology. Investigations on small scales are particularly crucial, as they offer unique
insights into the distribution of dark matter and thus the nature of dark matter. Among
the various methods, strong gravitational lensing is one of the most effective methods
for probing small-scale structures. Recent advancements in observational techniques have
yielded an increasing observed number of strong gravitational lensing events. Especially,
highly magnified individual/binary stars such as Icarus, Earendel, Mothra, and Dragon,
have been observed near the critical curve of galaxy clusters, where the magnification
of background sources becomes mathematically infinite. From these detections, we can
estimate in detail the shape and the distribution of the critical curves and thus the mass
distribution within the lens objects. These observations indicate the need for theoretical
studies of how small-scale structures, associated with the nature of dark matter, affect
the shape and the distribution of critical curves. Combining these theoretical studies with
observations can provide insights into the nature of dark matter.

In this thesis, we first study the effect of microlenses near the macro-critical curve
of the galaxy cluster, focusing on how micro-critical curves influence the detection of
highly magnified stars. We develop an analytic model for the high-magnification tail of
the probability distribution function (PDF), showing that the probability scales with the
independent number of micro-critical curves, consistent with lensing simulations. As an
application of the model, we calculate the number of Icarus-like events near the macro-
critical curve of the MACS J1149 cluster. We constrain the parameter space of microlens
that is consistent with the observed event number of Icarus, finding that stars that con-
tribute to the intra-cluster light (ICL stars) can explain the single event of Icarus. We
further examine the existence of the primordial black holes (PBHs) as microlenses in ad-
dition to ICL stars, resulting in the mass fraction fPBH ≳ 0.2 is excluded at the 95%
confidence interval (CI) when the PBH mass is around 1 M⊙, since such a high mass
fraction reduce the number of independent micro-critical curves.

We then investigate how substructures, such as subhalos, perturb the macro-critical
curve of the galaxy cluster. A possible observed example is Mothra, located 0.07 arc-
seconds from the estimated macro-critical curve of the MACS0416 cluster. However, its
counter-image has not been observed. This phenomenon could be explained by the pres-
ence of milli-lensing, however, it also might be explained by astrometric shifts in the
macro-critical curve. We derive the general analytic formula which relates the variance of
fluctuation in the macro-critical curve and that in surface density due to substructures.
As a specific example of substructures, we consider the cold dark matter (CDM) subhalos
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and show that the position of Mothra can be explained if the maximum subhalo mass
is around 109 M⊙/h. We also consider the granular structures in the fuzzy dark matter
(FDM) model, finding that a particle mass of m ≃ 10−24 eV/c2 is required to account for
the observed location of Mothra.

Finally, we study the galaxy-galaxy strong lensing (GGSL) cross-section within the
framework of the FDM model. The GGSL cross-section, defined as the total area enclosed
by secondary caustics generated by substructures, is observed to exceed predictions of
the CDM model by an order of magnitude. We numerically and analytically show that
FDM subhalos can produce larger cross-sections than CDM subhalos due to the presence
of soliton cores in FDM. The peak cross-section can be achieved when the soliton core
radius coincides with the size of the (secondary) critical curve, with a maximum ratio
of approximately two between FDM and CDM models when the baryon distribution is
included. These findings suggest that while FDM subhalos enhance the cross-section, the
FDM model may struggle to explain the observed GGSL cross-section.

While the constraints on the properties of dark matter obtained in this thesis are less
stringent than those found in the literature, the methods developed here represent an im-
portant step toward uncovering the nature of dark matter through future observations. In
particular, future observations of more highly magnified events (caustic crossing events)
may provide evidence for PBHs or FDM. Although Icarus exhibits a single peak of caus-
tic crossing during the observational period, discovering events where a source undergoes
two caustic crossings could enable the direct estimation of the size of the caustic and,
consequently, the size of the microlenses, providing more direct evidence for PBHs. For
this purpose, long-term monitoring over many years would be essential. Furthermore,
discovering a larger number of ultrahigh magnification images through such observations
could lead to a more detailed understanding of the shape of the macro-critical curve.
Investigating the distribution of fluctuations could provide evidence for FDM, as the nu-
merous granular structures lead to frequent fluctuations. These highly magnified events
are expected to be observed by the James Webb Space Telescope (JWST), the Nancy
Grace Roman Space Telescope, the Rubin Observatory, and the Thirty Meter Telescope
(TMT). The JWST has already identified more than 40 microlensed individual stars (red
supergiant stars) near the critical curve of the Abell 370 galaxy cluster [217], demonstrat-
ing the feasibility of such observations. Regarding the GGSL, the Euclid mission and the
Legacy Survey of Space and Time (LSST) through the Rubin Observatory are expected
to increase the sample size of the galaxy cluster significantly. Such large statistical sam-
ples enable us a direct comparison of the number of the GGSL without relying on mass
modeling, providing robust insights into dark matter subhalo abundance and its density
profile.

We expect that these future observations, combined with a more realistic extension
of our analytic models, will provide stronger implications on the fundamental properties
of dark matter. By continuing such studies to constrain the nature of dark matter from
the perspective of observational cosmology, it is expected that many dark matter models
proposed in particle physics would be ruled out. Furthermore, it will help narrow the
targets of collider experiments and direct and indirect detections. We hope that continued
progress in these areas will lead to a breakthrough, allowing us to finally uncover the true
nature of dark matter within our lifetime.
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