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Abstract

Primordial gravitational waves (PGWs) predicted by cosmic inflation remain unconfirmed by

observations. Detecting B-modes from PGWs is a primary objective of current and future

cosmic microwave background (CMB) experiments. The B-mode power spectrum from PGWs

depends not only on the tensor-to-scalar ratio (r) but also on the reionization history. Reion-

ization, the epoch when the first stars and galaxies ionized the intergalactic medium (IGM),

significantly influences the CMB polarization. During reionization, the scattering of CMB pho-

tons by free electrons generates the reionization bump in both EE and BB power spectra, which

is focused on by the next-generation observation. The precise modeling of reionization history

is crucial for accurately constraining r, which decides the amplitude of B mode and is related to

the energy scale of inflation. Variations in reionization models affect the amplitude and shape

of the CMB power spectra, introducing uncertainties in the measurement of r. Understand-

ing these impacts is essential for refining cosmological models and improving the detection of

PGWs.

In this study, To assess the impact of reionization history on r, we employed various fidu-

cial reionization models: exponential reionization model (characterized by a smooth, gradual

increase in ionization), double reionization model (involves two distinct phases of ionization,

leading to a more complex reionization history), and random reionization models (Generated by

varying parameters randomly to simulate a range of possible reionization scenarios). We calcu-

lated the resulting CMB E- and B-mode signals for each model, analyzing how deviations from

the true reionization history affect the constraints on r. We use the tanh reionization model

(characterized by a smooth but fast increase in ionization) as a theory model to calculate the

posterior distribution of r and the reionization parameter.

Our analysis reveals that inaccuracies in the reionization model can lead to a non-negligible bias

in the estimated value of r. Specifically, random reionization histories tend to introduce more

considerable uncertainties when r is small and the optical depth is high. This effect complicates

the detection of PGWs, as it becomes more challenging to distinguish the primordial B-mode

signal from the noise introduced by incorrect reionization modeling.
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Chapter 1

Introduction

1.1 Status of cosmology

In recent years, cosmology has made remarkable strides, particularly through observations of
the cosmic microwave background (CMB), large-scale structure (LSS), and supernovae. These
observations have led to a standard model of cosmology, known as the flat Λ Cold Dark Matter
(ΛCDM) model (Peebles, 1984; Carroll, 2001; Peebles & Ratra, 2003; Komatsu et al., 2011;
Aghanim et al., 2020b). The model describes a universe dominated by dark energy (Λ, ∼ 70%)
and cold dark matter (CDM, ∼ 25%), with baryons contributing the remaining 5% (Guo et al.,
2016; Ade et al., 2016; Bullock & Boylan-Kolchin, 2017; Perivolaropoulos & Skara, 2022).

Key observational evidence supporting the ΛCDM model comes from a variety of independent
sources, each reinforcing the robustness and accuracy of the model. CMB provides a snapshot
of the early universe, revealing the temperature fluctuations that correspond to the density
variations from which galaxies and large-scale structures eventually formed. The composition
and geometry of the universe predicted by the ΛCDM have been confirmed by the precise
measurements of the CMB anisotropies from the Planck satellite (Aghanim et al., 2020a). In
addition, LSS surveys map the distribution of galaxies and clusters, which follow the patterns
of the gravitational influence of dark matter. Observations from the Sloan Digital Sky Survey
(SDSS) (Eisenstein et al., 2005) and the Baryon Oscillation Spectroscopic Survey (BOSS)
(Alam et al., 2017) have provided detailed maps of the structure, consistent with the growth
of cosmic structures over time predicted by the ΛCDM model. Moreover, Type Ia supernovae
have been crucial in establishing the accelerating expansion of the universe, a phenomenon
attributed to dark energy (Weinberg et al., 2013; Riess et al., 1998; Perlmutter et al., 1999).
The latest constraints on cosmological parameters are (Aghanim et al., 2020a): h = H0/(100km
s−1Mpc−1)= 0.6732 (but from the observation of supernovae (Riess et al., 2021) h = 0.732),
Ωmh

2 = 0.14314, ΩΛ = 0.6842, Ωbh
2 = 0.22383, σ8 = 0.8120, and ns = 0.96605.

Although ΛCDM successfully matches with many observation results, it also faces significant
challenges, such as the Hubble tension, which highlights a discrepancy between the Hubble
constant values measured from the CMB by Planck (Aghanim et al., 2020a) and local mea-
surements using Cepheids and Type Ia supernovae (Riess et al., 2021), suggesting potential
new physics beyond the model. Besides, the exact nature and interactions of cold dark mat-
ter remain unknown, prompting ongoing searches through direct detection experiments and

1
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astrophysical observations. Additionally, while dark energy drives the universe’s accelerating
expansion, its fundamental nature is still mysterious, with various theories like quintessence
and modifications to general relativity being explored to understand its properties (Peebles &
Ratra, 2003).

1.2 Status of r constraint

The origin of the universe remains an open question and is subject to intense research. The
cosmic inflation (Brout et al., 1978; Kazanas, 1980; Starobinsky, 1980; Guth, 1981; Sato, 1981;
Albrecht & Steinhardt, 1982; Linde, 1982a), which is thought to drive rapid exponential ex-
pansion in the early universe, not only solves the flatness problem and horizon problem related
to the CMB temperature but also generates the primordial density fluctuations by quantum
fluctuations in the spacetime metric during inflation (Mukhanov & Chibisov, 1981; Guth & Pi,
1982; Hawking, 1982; Linde, 1982b; Starobinsky, 1982; Bardeen et al., 1983) that will even-
tually become the structure of the universe such as galaxies (Achúcarro et al., 2022). While
the primordial density fluctuations predicted by cosmic inflation have already been extensively
verified, inflation also predicts the gravitational waves produced in the very early universe
(primordial gravitational waves, PGWs) (Starobinskii, 1979; Rubakov et al., 1982; Fabbri &
Pollock, 1983; Abbott & Wise, 1984), which remains unconfirmed (LiteBIRD Collaboration
et al., 2023).

The most effective method currently for detecting PGWs is to observe a curl pattern in the
CMB polarization map (B-mode) since the density fluctuations at linear order do not generate
the B-mode and are sensitive to the PGWs (Kamionkowski et al., 1997a,b; Seljak, 1997; Seljak &
Zaldarriaga, 1997; Zaldarriaga & Seljak, 1997). The tensor spectrum amplitude, parameterized
by the tensor-to-scalar ratio (r) (Davis et al., 1992), is directly linked to the expansion rate
during inflation and can provide insights into the energy scale of inflation in the simplest models
(Kamionkowski & Kovetz, 2016; Achúcarro et al., 2022).

The CMB observations set upper limits on the PGWs, and provide crucial constraints on
inflationary models. The best current constraints on r come from combined CMB observations
by the BICEP/Keck Array, Planck, and WMAP, yielding r <0.036 at 95% confidence (Ade
et al., 2021), shown in figure 1.1, significantly refining our understanding of the inflationary
epoch. These results rule out several high-energy inflation models, pushing the exploration
towards lower energy scales and alternative scenarios within the inflationary framework.

Prospects for future measurements and improvements in r and other inflationary parameters
are promising, driven by advancements in both technology and observational strategies. Within
the next five years, the ground-based Simons Observatory (SO) is expected to achieve a highly
precise measurement of the tensor-to-scalar ratio, with an anticipated sensitivity of σ(r) =
0.002 (Namikawa et al., 2022). Looking further ahead to the 2030s, the LiteBIRD mission, a
Japanese-led space-based CMB experiment, aims to push the sensitivity even further, targeting
σ(r) < 0.001 (LiteBIRD Collaboration et al., 2023). By operating above the atmosphere of
Earth, LiteBIRD will avoid noise and distortions from the atmosphere, allowing for cleaner
and more precise measurements of the CMB polarization. In addition to these efforts, the
CMB-S4 project, a comprehensive ground-based initiative, is projected to achieve a sensitivity
in the range of σ(r) between 5 × 10−4 and 8 × 10−4 (Abazajian et al., 2019). The combined
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Figure 1.1: Current status of measurements of B-mode power spectrum (Ade et al., 2021). The
solid red line shows the theory prediction of the lensing B-modes and the dashed red lines show
the theory prediction of the primordial B-modes. Triangles are the upper limits (Bennett et al.,
2013; Adachi et al., 2020; Leitch et al., 2005; Montroy et al., 2006; Sievers et al., 2007; Bischoff
et al., 2008; Brown et al., 2009; Araujo et al., 2012; Barkats et al., 2014; Kusaka et al., 2018;
Tristram et al., 2021; Ade et al., 2022) and the circles (Ade et al., 2021) and squares (Sayre
et al., 2020; Choi et al., 2020; Ade et al., 2017) are the detection, respectively.
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efforts of these next-generation experiments will significantly enhance our ability to detect or
constrain primordial gravitational waves. If future measurements can place an upper limit on
r ∼ 0.002, it would rule out many single-field inflation models with characteristic energy scales
larger than the Planck scale (LiteBIRD Collaboration et al., 2023), providing critical insights
into the mechanisms driving inflation. These advancements will help to resolve key questions
about the inflationary epoch and the fundamental properties of the early universe, marking a
new era in precision cosmology.

1.3 Status of reionization constraint

The reionization epoch represents a critical phase in the history of the universe, marking the
transition from the dark ages to a universe filled with light and complex structures. This
period saw the formation of the first stars and galaxies that ionized the neutral hydrogen in
the intergalactic medium roughly between z ≃ 12 and z ≃ 6, and the quasars that ionized
the helium from z ≃ 6 to z ≃ 2 (Adam et al., 2016). The ultraviolet light from these early
stars and galaxies ionized the neutral hydrogen in the intergalactic medium, leading to the
formation of large ionized bubbles that eventually overlapped and reionized the entire universe
(Fan et al., 2006a). This reionization process significantly influenced the thermal history and
structure formation of the universe by providing feedback mechanisms, such as evaporation
by photoionization heating, increasing the pressure support in galaxies, and suppressing star
formation in low-mass galaxies (Barkana & Loeb, 2001). Moreover, the reionization epoch
leaves an imprint on CMB, particularly in the polarization patterns. It damps the primary
CMB temperature anisotropies on small scales (Adam et al., 2016), and produces a bump in
the polarization power spectrum at large angular scales, which corresponds to the horizon at
the time of reionization (Hu & Dodelson, 2002). Additionally, temperature anisotropies can
also be generated by the kinetic Sunyaev-Zeldovich (kSZ) effect (Sunyaev & Zeldovich, 1980),
which arises from Doppler shifts caused by scattering electrons. Understanding the timing and
progression of reionization is thus essential for constructing accurate models of the universe’s
evolution and for interpreting observations from current and future cosmological surveys.

Current constraints on the reionization epoch from CMB measurements provide critical insights
into the timing and duration of this transformative period in the history of the universe. By
assuming a simple tanh model of the reionization history, the latest result from the Planck
satellite’s 2018 data release has significantly refined our understanding by providing a precise
measurement of the optical depth due to reionization, which is constrained to τ = 0.054±0.007,
and it corresponds to the reionization redshift mid-point zre at 7.67 ± 0.73 (Aghanim et al.,
2020a). However, recently, without relying on large-scale CMB polarization, the constraint on
τ becomes 0.080± 0.012 (Giarè et al., 2024). This huge difference shows that obtaining precise
measurements of τ is still significantly challenging.

In addition to the CMB observation giving the integration measurement of the reionization
epoch, observational evidence of reionization history comes significantly from studies of high-
redshift quasars and galaxies, which provide insights into the ionization state of the intergalactic
medium (IGM). The measurements of Gunn-Peterson troughs (Gunn & Peterson, 1965) in the
spectra of quasars (QSOs), shows the reionization is completed by z ∼ 6 (Fan et al., 2006b),
while the observations of the fluctuations of the Lyman-α optical depth in high-redshift quasar
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spectra (Bosman et al., 2022) and the inferred low mean free path of ionizing photons (Gaikwad
et al., 2023) suggest that reionization may complete late around z ∼ 5.2.

Despite the precise observation of τ and the time (zre and zend) of the reionization, the detailed
history of reionization remains poorly understood. Especially the timeline and spatial variation
of the reionization process at higher redshifts (z > 6) are still highly uncertain. The Lyα
emission line, due to its sensitivity to neutral hydrogen fraction, serves as a significant probe for
studying reionization history (Ouchi et al., 2020). Yet, Lyα emitters (LAEs) at high redshifts
(z > 7) are exceedingly rare, making it challenging to use these emitters to constrain the
reionization history (Nakane et al., 2024). The advent of the James Webb Space Telescope
(JWST) has enabled deeper observations at higher redshifts, providing new constraints, but
our understanding of the reionization history remains limited. Figure 1.2 shows the latest
constraint on the reionization history (Nakane et al., 2024), illustrating that a wide range of
models remains viable under current constraints. This highlights the significant uncertainties
in our understanding of reionization. One of the primary motivations for this project is to
examine how these uncertainties, stemming from the unknown specifics of the reionization
history, impact the detection of PGWs.

1.4 Problem of r constraint on large scale

Detecting PGWs through B-mode polarization presents significant challenges, both in terms
of theoretical uncertainties and observational difficulties. In the simplest single-field slow-roll
inflation models, PGWs arise from quantum vacuum fluctuations in spacetime. However, alter-
native scenarios involving additional fields, such as an SU(2) gauge field, can produce strongly
scale-dependent gravitational waves (Maleknejad & Sheikh-Jabbari, 2011, 2013; Dimastrogio-
vanni et al., 2017), resulting in larger amplitude B-mode power spectra on large scales (e.g.,
l ∼4) (Campeti et al., 2024), which correspond to the reionization bump. The reionization
bump is influenced by the history of the reionization epoch, introducing further uncertain-
ties and complicating the differentiation of inflationary models. Additionally, cosmic variance,
which arises from the limited number of large-scale modes available for measurement, imposes
fundamental limits on the precision of r measurements.

Foreground contamination from astronomical phenomena, including emissions from the Milky
Way and gravitational lensing by large-scale structure, also poses significant challenges. Galac-
tic foreground emissions include thermal emission from interstellar dust aligned with the Galac-
tic magnetic field and synchrotron emission from electrons spiraling in the Galactic magnetic
field (LiteBIRD Collaboration et al., 2023). To mitigate these challenges, various methods have
been developed for foreground cleaning. These methods can be broadly categorized into para-
metric and blind approaches (Carones et al., 2023). Parametric methods, such as Commander
(Eriksen et al., 2008) and FGBuster (Stompor et al., 2009) involve modeling and subtracting
the foregrounds, but they may introduce biases if the models are inaccurate. Blind methods,
which do not rely on specific foreground models, such as ILC (Bennett et al., 2003; Tegmark
et al., 2003) and NILC (Delabrouille et al., 2009), can avoid such biases but often struggle with
the complexity of galactic foregrounds. Additionally, gravitational lensing modifies the pattern
of the CMB polarization map, producing B-modes even in the absence of original B-modes
at the CMB last scattering since CMB photons are deflected by the gravitational potentials
(LiteBIRD Collaboration et al., 2023). Delensing techniques are being developed to remove
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Figure 1.2: Repost from figure 15 in Nakane et al. (2024). xHI is the fraction of the neutral
hydrogen. The purple solid, blue-dotted, and orange-dashed lines represent three different reion-
ization history models, suggested by Naidu et al. (2020), Ishigaki et al. (2018) and Finkelstein
et al. (2019), respectively. The black squares, circles, and diamonds are from Lyα damping
wing absorption of gamma-ray bursts (GRBs) (Totani et al., 2006, 2014), QSOs (Schroeder
et al., 2013; Davies et al., 2018; Greig et al., 2019; Wang et al., 2020), and Lyman-break galax-
ies (LBGs) (Curtis-Lake et al., 2023; Hsiao et al., 2023; Umeda et al., 2023), respectively. The
gray triangles and circles are from an LAE clustering analysis (Ouchi et al., 2018; Umeda et al.,
2023) and Lyα luminosity function (Ouchi et al., 2010; Konno et al., 2014; Inoue et al., 2018;
Morales et al., 2021; Goto et al., 2021; Ning et al., 2022; Umeda et al., 2023), respectively. The
gray diamonds are from the Lyα equivalent width (EW) distribution of LBGs (Hoag et al.,
2019; Mason et al., 2019; Jung et al., 2020; Whitler et al., 2020; Bruton et al., 2023; Morishita
et al., 2023). The white triangles and circles are from the Gunn-Peterson trough of QSOs (Fan
et al., 2006b), and Lyα and Lyβ forest dark fractions of QSOs (McGreer et al., 2015; Zhu et al.,
2022; Jin et al., 2023), respectively. The white pentagon is from the CMB observations under
the assumption of instantaneous reionization (Aghanim et al., 2020a)
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this lensing signal, including utilizing internal CMB lensing maps and external mass-tracer
maps (Lizancos et al., 2021; Smith et al., 2012; Carron, 2019), such as the cosmic infrared
background (CIB) (Sherwin & Schmittfull, 2015; Simard et al., 2015) and intensity mapping
signals (Sigurdson & Cooray, 2005; Karkare, 2019), but their effectiveness in realistic scenarios
remains to be fully demonstrated.

This thesis focuses on the theory of uncertainty brought by the poor understanding of reioniza-
tion history. The thesis is organized as follows. We review the basic knowledge of cosmology,
CMB, and reionization in section 2. We introduce our method in section 3. We show the un-
certainty and bias when we assume different fiducial reionization models in section 4. Finally,
we discuss the contribution of different angular scale in section 5.



Chapter 2

Review of CMB and reionization

In this chapter, we first summarize the background evolution of the universe and define impor-
tant quantities in cosmology. We then review the Boltzmann equation, CMB temperature and
polarization anisotropies, inflationary gravitational waves, and CMB angular power spectrum.
We also review cosmic reionization. This chapter is based on the textbook of Dodelson &
Schmidt (2020). We assume c = 1 for the whole chapter.

2.1 Basis of cosmology

In this section, we start with the Einstein equation to derive equations describing the back-
ground evolution of the universe.

2.1.1 Einstein equations

The Einstein equation is given by

Gµν + Λgµν = 8πGTµν . , (2.1)

where Gµν is defined as

Gµν ≡ Rµν −
1

2
gµνR . (2.2)

Λ is the cosmological constant, gµν is the metric, Rµν is the Ricci tensor, R is the Ricci scalar,
and Tµν is the energy-momentum tensor. We will explain these symbols in the following texts.

Metric

The invariant interval in four spacetime, which is not changed by coordinate change, is shown
as

ds2 =
3∑

µ,ν=0

gµνdx
µdxν , (2.3)

8
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where x0 is time, t, and xi are the spatial coordinates. The metric used for calculating the
invariant interval in a smooth (isotropic and homogeneous) and expanding universe is the
Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric:

gµν =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 . (2.4)

Here, a is a scale factor, introduced for describing expansion. We set a at present as 1, and less
than 1 at the previous time.

Geodesic and Christoffel symbol

The geodesic is the curve that parallel-transports its tangent vector (Schutz, 2022). If we use λ

to parameterize this line, the tangent to the curve is dx⃗/dλ. The vector V⃗ parallel-transporting
the line is:

dV⃗

dλ
= 0. (2.5)

The left-hand side of it is expanded as:

dV⃗

dλ
=

dV α

dλ
e⃗α + V αde⃗α

dλ

=
dV α

dλ
e⃗α + V αdx

β

dλ

∂e⃗α
∂xβ

,

(2.6)

where e⃗α is the basis vector. The ∂e⃗α/∂x
β can also be expanded as a linear combination of the

basis vectors:
∂e⃗α
∂xβ

= Γµ
αβ e⃗µ, (2.7)

where the Γµ
αβ is called the Christoffel symbol. The vector V⃗ is the tangent dx⃗/dλ for the

geodesic. Substituting Eq. (2.7) into Eq. (2.6), we obtain

d

dλ

(
dx⃗

dλ

)
=

d

dλ

(
dxα

dλ

)
e⃗α +

dxα

dλ

dxβ

dλ
Γµ
αβ e⃗µ

=
d

dλ

(
dxµ

dλ

)
e⃗µ +

dxα

dλ

dxβ

dλ
Γµ
αβ e⃗µ = 0 .

(2.8)

Therefore, the geodesic equation is:

d2xµ

dλ2
= −Γµ

αβ

dxα

dλ

dxβ

dλ
(2.9)

In addition, the relationship between the Christoffel symbol and metric is:

Γµ
αβ =

gµν

2

(
∂gαν
∂xβ

+
∂gµν
∂xα

− ∂gαβ
∂xν

)
. (2.10)
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Ricci tensor and Ricci scalar

The Ricci tensor is expressed by the Christoffel symbols:

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βνΓ
β
µα , (2.11)

where , α means ∂/∂xα. The Ricci scalar is the contraction of the Ricci tensor:

R ≡ gµνRµν (2.12)

By putting the FLRWmetric into the Christoffel symbol, we can get the following non-vanishing
values:

Γ0
ij = δij ȧa

Γi
0j = Γi

j0 = δij
ȧ

a
,

(2.13)

where ȧ means da/dx0 = da/dt.

Energy-momentum tensor

The energy-momentum tensor in the smooth universe is:

T µ
ν =


−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (2.14)

where ρ is the energy density and P is the pressure. The photon, neutrino, baryon, dark matter,
and dark energy contribute to the energy density.

2.1.2 Friedmann equations

The Einstein equation is a tensor equation, so we can write several equations for the components.
For the smooth universe, the Ricci tensor does not vanish only when µ = ν. First, we consider
the time-time component (µ = ν = 0). From Eqs. (2.11) and (2.13), we obtain:

R00 = Γα
00,α − Γα

0α,0 + Γα
βαΓ

β
00 − Γα

β0Γ
β
0α

= −δii
∂

∂x0

(
ȧ

a

)
−
(
ȧ

a

)2

δijδij

= −3
ä

a
.

(2.15)
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Next, we consider the spatial-spatial components:

Rij = Γα
ij,α − Γα

iα,j + Γα
βαΓ

β
ij − Γα

βjΓ
β
iα

= δij(äa+ ȧ2) + 3δij ȧ
2 − δij ȧ

2 − δij ȧ
2

= δij(2ȧ
2 + aä) .

(2.16)

Therefore, the Ricci scalar is

R = gµνRµν

= −R00 +
1

a2
Rii

= 6

[
ä

a
+

(
ȧ

a

)2
]
.

(2.17)

Then the time-time component in the Einstein equation is:

R00 −
1

2
g00R + Λg00 = 8πGT00 ,(
ȧ

a

)2

− 1

3
Λ =

8πG

3
ρ .

(2.18)

If we define the energy-momentum tensor for cosmological constant as

T µ
(Λ)ν = − Λ

8πG
δµν , (2.19)

the second line of Eq. (2.18) becomes (
ȧ

a

)2

=
8πG

3
ρ . (2.20)

The spatial-spatial component in the Einstein equation is:

Rij −
1

2
gijR = 8πGTij ,

ä

a
+

1

2

(
ȧ

a

)2

= −4πGP ,

ä

a
= −4πG

3
(ρ+ 3P ) .

(2.21)

Eq. (2.20) and the third line in Eq. (2.21) are called Friedmann equations.

2.1.3 The components in the universe

By taking the derivative of both sides of Eq. (2.20), we obtain:

2ȧä =
8πG

3
(ρ̇a2 + 2ȧaρ) (2.22)
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Substituting Eq. (2.21) into the above equation, we obtain:

d

dt
(a3ρ) = −P

da3

dt
, (2.23)

which is called the conservation law. The equation of state of cosmic inventory is:

P = wρ. (2.24)

By substituting the above equation into Eq. (2.23), we obtain the evolution of the density
(assuming w is a constant):

ρ ∝ a−3(1+w). (2.25)

For matter (including the dark matter and the baryon), w = 0, and

ρm ∝ a−3. (2.26)

For radiation (including the photon and the neutrino), w = 1/3, and

ρr ∝ a−4. (2.27)

The dark energy drives the accelerated cosmic expansion:

ä = −4πG

3
(ρ+ 3P ) > 0 , (2.28)

i.e. w < −1/3. Specifically, when w = −1 (P = −ρ), the energy density is constant which
matches Eq. (2.19). This type of dark energy is called the cosmological constant.

2.1.4 Important parameters and quantities

Hubble parameter

If a galaxy does not have a peculiar velocity but flows with the universe expanding, the velocity
is:

r =
d

dt
(ax) = ȧx =

ȧ

a
(ax) =

ȧ

a
d ≡ Hd . (2.29)

Equation (2.29) is called the Hubble-Lemâıtre law, andH is the Hubble parameter. The present
Hubble parameter is H0, which is also called the Hubble constant.

Redshift

The wavelength of light increases as the universe expands:

λ′

λ
=

p

p′
=

a(t′)

a(t)
, (2.30)
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where p is the momentum. We define redshift as:

z ≡ λ0 − λ

λ
=

a(t0)

a(t)
− 1 (2.31)

where subscript 0 means the quantity at present.

Comoving horizon

The comoving horizon, also known as the conformal time, is defined by:

η(t) ≡
∫ t

0

dt′

a(t′)
. (2.32)

It describes the comoving distance that light traveled for the Big Bang, which means no infor-
mation can propagate further than η. It increases as time passes by and we use it as a time
variable.

Comoving Hubble radius

We change the integration variables from t′ to ln a′ in Eq. (2.32):

η =

∫ a

0

d ln a′
1

a′H(a′)
, (2.33)

where we define (aH)−1 as comoving Hubble radius.

2.2 Boltzmann equation and CMB temperature anisotropy

In this section, we discuss how the metric perturbation and the Thomson scattering by electrons
affect photon distribution in the phase space, and we derive the CMB temperature anisotropy.

2.2.1 Distribution function

The distribution function f(x⃗, p⃗, t) describes the number of particles near position x⃗ and mo-
mentum p⃗. The energy density is described by

ρi(x⃗, t) = gi

∫
d3p

(2π)3
fi(x⃗, p⃗, t)Ei(p) , (2.34)

where Ei(p) =
√

p2 +m2
i , gi is the degeneracy of the species, and (2π)3 is from the Hisenberg’s

principle, i means different species. For the bosons whose temperature is T in equilibrium, they
follow the Bose-Einstein distributions:

fBE(E) =
1

e(E−µ)/T − 1
, (2.35)
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where µ is the chemical potential. The fermions follow the Fermi-Dirac distributions:

fFD(E) =
1

e(E−µ)/T + 1
. (2.36)

By these equations, we can use temperature to describe the energy density.

2.2.2 Boltzmann equation for photon

The Boltzmann equation describes the evolution of the distribution function which is given by

df

dt
= C [f ] , (2.37)

where C[f ] is the collision term. Here, we are particularly interested in the evolution of the
distribution function of photons. In the following text, we include the metric perturbation and
the Thomson scattering by electrons to see how they affect the distribution function of photons.

The total derivative in the left-hand side of Eq. (2.37) can be expanded as:

∂f

∂t
+

∂f

∂x

dx

dt
+

∂f

∂p

dp

dt
+

∂f

∂p̂i
dp̂i

dt
= C [f ] . (2.38)

The effect from the metric perturbation is introduced when we calculate dx/dt, dp/dt, and
dp̂i/dt, where p̂i is the direction of the photon satisfying δij p̂

ip̂j = 1. The scattering from the
electron is in the collision term, C [f ].

Metric perturbation

Let us first discuss the metric perturbation. The scalar metric perturbation in the conformal
Newtonian gauge is:

gµν(x⃗, t) =


−1− 2Ψ(x⃗, t) 0 0 0

0 a2(t)(1 + 2Φ(x⃗, t)) 0 0
0 0 a2(t)(1 + 2Φ(x⃗, t)) 0
0 0 0 a2(t)(1 + 2Φ(x⃗, t))

 ,

(2.39)
where Ψ corresponds to the Newtonian potential, and Φ is the perturbation to the spatial
curvature.

We first consider dxi/dt:
dxi

dt
=

dxi

dλ

dλ

dt
(2.40)

We define the four-momentum vector as

P µ ≡ dxµ

dλ
(2.41)
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Then, Eq. (2.40) becomes:
dxi

dt
=

P i

P 0
(2.42)

For massless photons, we have

P 2 = gµνP
µP ν = −(1 + 2Ψ)(P 0)2 + p2 = 0, (2.43)

where p2 is defined by
p2 ≡ gijP

iP j (2.44)

Therefore, the P 0 is

P 0 =
p√

1 + 2Ψ

≃ p(1−Ψ)
(2.45)

Since P i is proportional to the p̂i, we assume P i = Cp̂i. Substituting P i into Eq. (2.44), we
obtain

p2 = gij p̂
ip̂jC2

= a2(1 + 2Φ)C2 , (2.46)

and find

P i =
p

a
√
1 + 2Φ

p̂i

≃ pp̂i
1− Φ

a

(2.47)

Substituting Eqs (2.45) and (2.47) into Eq. (2.40), we obtain:

dxi

dt
=

pp̂i(1− Φ)

ap(1−Ψ)

≃ p̂i

a
(1 + Ψ− Φ)

(2.48)

Note that the calculations above all keep only the first order.

Next, we consider dp/dt. According to Eq. (2.45), P 0 contains the momentum, and we start
from dP 0/dt:

dP 0

dt
=

dP 0

dλ

dλ

dt
(2.49)

According to Eq. (2.41), dλ/dt = 1/P 0. Using the geodesic equation (2.9), we know:

dP 0

dλ
= −Γ0

αβP
αP β

= −g00

2

(
∂gα0
∂xβ

+
∂gβ0
∂xα

− ∂gαβ
∂x0

)
PαP β

≃ 1− 2Ψ

2

(
− 2

∂Ψ

∂t
p2(1−Ψ)2 − 4

∂Ψ

∂xi
p2(1−Ψ)p̂i

1− Φ

a
− δij

∂

∂t
(a2(1 + 2Φ))P iP j

)
.

(2.50)
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We keep only the zeroth and first order:

dP 0

dλ
≃ p2

(
−∂Ψ

∂t
− 2

∂Ψ

∂xi

p̂i

a
−H − ∂Φ

∂t

)
. (2.51)

Using Eq. (2.45), we rewrite the left-hand side of Eq. (2.49):

dP 0

dt
=

dp

dt
(1−Ψ)− p

(
∂Ψ

∂t
+

∂Ψ

∂xi

dxi

dt

)
. (2.52)

Substituting Eqs (2.51) and (2.52) into Eq. (2.49), we obtain

dp

dt
(1−Ψ)− p

(
∂Ψ

∂t
+

∂Ψ

∂xi

p̂i

a
(1 + Ψ− Φ)

)
=

p

1−Ψ

(
−∂Ψ

∂t
− 2

∂Ψ

∂xi

p̂i

a
−H − ∂Φ

∂t

)
(2.53)

After keeping only the zeroth and first order, we obtain

dp

dt
≃ −p

(
∂Ψ

∂xi

p̂i

a
+H +

∂Φ

∂t

)
. (2.54)

Therefore, the left-hand side of the Boltzmann equation is written in terms of the metric
perturbations as

df

dt
=

∂f

∂t
+

p̂i

a

∂f

∂xi
− p

∂f

∂p

(
H +

∂Φ

∂t
+

p̂i

a

∂Ψ

∂xi

)
. (2.55)

Distribution function perturbation

Photons follow the Bose-Einstein distribution, where we assume µ = 0:

f(p, T ) =
1

exp(p/T )− 1
, (2.56)

We expand it around T :

f(p, T + δT ) ≃ f(p, T ) +
∂f(p, T )

∂T
δT

= f(p, T )− p
∂f(p, T )

∂p
δT/T.

(2.57)

Here, T (t) is only the function of time, but the perturbation δT is also the function of the
position and the momentum. We define Θ(x⃗, p̂, t) ≡ δT/T . We substitute Eq. (2.57) into
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Eq. (2.55) and only keep the zeroth and the first order:

df

dt
≃

∂(f(p, T )− p∂f
∂p
Θ)

∂t
+

p̂i

a

∂(f(p, T )− p∂f
∂p
Θ)

∂xi
−

∂(f(p, T )− p∂f
∂p
Θ)

∂p
p

(
H +

∂Φ

∂t
+

p̂i

a

∂Ψ

∂xi

)
≃
(
∂f

∂T

dT

dt
− p

∂f

∂p
H

)
+ p

(
− ∂

∂p

(
p
∂f

∂p

)
Θ

T

dT

dt
− ∂f

∂p

∂Θ

∂t

− p̂i

a

∂f

∂p

∂Θ

∂xi
− ∂f

∂p
ΘH − ∂f

∂p

∂Φ

∂t
− ∂f

∂p

p̂i

a

∂Ψ

∂xi

)
.

(2.58)

The first bracket in Eq. (2.58) is the zeroth order term and it should be equal to 0 since in the
equilibrium state there is no collision. Then, the Boltzmann equation becomes:

C [f ] = p

(
−∂f

∂p

Θ

T

dT

dt
− ∂f

∂p

∂Θ

∂t
− p̂i

a

∂f

∂p

∂Θ

∂xi
− ∂f

∂p
ΘH − ∂f

∂p

∂Φ

∂t
− ∂f

∂p

p̂i

a

∂Ψ

∂xi

)
= −p

∂f

∂p

(
∂Θ

∂t
+

p̂i

a

∂Θ

∂xi
+

∂Φ

∂t
+

p̂i

a

∂Ψ

∂xi

)
.

(2.59)

Collision term

Photons interact with electrons via the Compton scattering:

e−(q⃗) + γ(p⃗) ↔ e−(q⃗′) + γ(p⃗′) (2.60)

The collision term due to the Compton scattering is given by (Dodelson & Schmidt, 2020)

C [f(p⃗)] =
1

2E(p)

∫
d3q

(2π)32Ee(q)

∫
d3q′

(2π)32Ee (q′)

∫
d3p′

(2π)32E (p′)

∑
spins

|M|2

× (2π)4δ
(3)
D (p⃗+ q⃗ − p⃗′ − q⃗′)δ

(1)
D (E(p) + Ee(q)− E (p′)− Ee (q

′))

× (fe (q⃗
′) f (p⃗′)− fe(q⃗)f(p⃗)) ,

(2.61)

where M is the scattering amplitude, δ
(n)
D is the n-dimensional Dirac delta function, E is the

photon’s energy, Ee is the electron’s energy, and fe is the electron’s distribution function. Since
E2 = p2+m2, E(p) = p and Ee(q) ≃ me after electron becoming non-relativistic. By integrating
over q⃗, the collision term becomes:

C [f(p⃗)] =
π

2mep

∫
d3q

(2π)32me

∫
d3p′

(2π)32p′
δ
(1)
D (p+ Ee(q)− p′ − Ee(|q⃗ + p⃗− p⃗′|))

×
∑
spins

|M|2(fe(q⃗ + p⃗− p⃗′)f(p⃗′)− fe(q⃗)f(p⃗)).
(2.62)
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Now, we expand δ
(1)
D (p− p′ − Ee(q

′) + Ee(q)) at Ee(q
′) around Ee(q):

δ
(1)
D (p− p′ − Ee(q

′) + Ee(q)) ≃ δ
(1)
D (p− p′)

+
∂δ

(1)
D (p− p′ − Ee(q

′) + Ee(q))

∂Ee(q′)

∣∣∣
Ee(q′)=Ee(q)

(Ee(q
′)− Ee(q))

= δ
(1)
D (p− p′) +

∂δ
(1)
D (p− p′)

∂p′
(Ee(q

′)− Ee(q)),

(2.63)

where Ee(q
′)− Ee(q) is:

Ee(q
′)− Ee(q) ≃

(p⃗− p⃗′) · q⃗
me

. (2.64)

Since the collision is elastic in the non-relativistic Compton scattering, we ignore the first term,
which means p⃗′ ≃ p⃗. In addition, fe(q⃗ + p⃗ − p⃗′) becomes fe(q⃗). Substituting Eqs (2.63) and
(2.64) into Eq. (2.62), and integrating with respect to q, we obtain

C [f(p⃗)] =
ne

2

π

8m2
ep

∫
d3p′

(2π)3p′

∑
spins

|M|2

×

(
δ(1)(p− p′) + (p⃗− p⃗′) · v⃗b

∂δ
(1)
D (p− p′)

∂p′

)
(f(p⃗′)− f(p⃗)),

(2.65)

where v⃗b is the bulk velocity of the electrons. We expand photon distribution as in Eq. (2.57):

C [f (p⃗)] =
neπ

16m2
ep

∫
d3p′

(2π)3p′

∑
spins

|M|2
(
δ
(1)
D (p− p′) + (p⃗− p⃗′) · v⃗b

∂δ
(1)
D (p− p′)

∂p′

)

×
((

f (p′, T )− p′
∂f

∂p′
Θ

)
−
(
f (p, T )− p

∂f

∂p
Θ

))
≃ ne

96π2m2
ep

∫ ∞

0

dp′p′
∫

dΩ′
∑
spins

|M|2
(
δ
(1)
D (p− p′)

(
−p′

∂f

∂p′
Θ+ p

∂f

∂p
Θ

)

+ (p⃗− p⃗′) · v⃗b
∂δ

(1)
D (p− p′)

∂p′
(f (p′, T )− f (p, T ))

)
. (2.66)

To describe the solid angle, we need to define the angle between the wavenumber k⃗ and the
photon direction p̂:

µ ≡ k⃗ · p̂
k

, (2.67)

where the wavenumber k⃗ comes from the Fourier transform of the photon’s spatial position:

f(x⃗) =

∫
d3k

(2π)3
eik⃗·x⃗f(k⃗) (2.68)
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Usually, we assume that the velocities are longitudinal (∇× v⃗b = 0):

v⃗b(k⃗) =
k⃗

k
vb(k⃗) (2.69)

The amplitude squared for Compton scattering is:∑
spins

|M|2 = 24πσTm
2
e

(
1 + [p̂ · p̂′]2

)
(2.70)

We expand the amplitude by the Legendre polynomial Pl(µ) and integrate with respect to p′,
leading the collision term to (Dodelson & Schmidt, 2020):

C[f(p⃗)] = −p
∂f

p
neσT

(
Θ0 −Θ+ µvb −

1

2
P2 (µ)Θ2

)
(2.71)

We define the multipole moment of the temperature field as:

Θl(k) ≡
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ(µ, k), (2.72)

In addition, we define the optical depth as (Fukugita, 2003):

τ(η) ≡
∫ η0

η

dηneσTa, (2.73)

where η is the conformal time. Using the Fourier transform of Eq. (2.59), and changing t to η,
we obtain the Boltzmann equation for photons:

Θ′ = −ikµ(Θ + Ψ)− Φ′ − τ ′
(
Θ0 −Θ+ µvb −

1

2
P2 (µ)Θ2

)
, (2.74)

where ′ ≡ d/dη. Besides, if we consider the contribution from polarization, then Eq. (2.74)
becomes (Dodelson & Schmidt, 2020):

Θ′ = −ikµ(Θ + Ψ)− Φ′ − τ ′
(
Θ0 −Θ+ µvb −

1

2
P2 (µ)Π

)
, (2.75)

where
Π = Θ2 +ΘP2 +ΘP0 (2.76)

2.2.3 CMB anisotropy

Line-of-sight integral

To get the presently observed anisotropy, we perform the line-of-sight integration over Eq. (2.74):

Θ(k⃗, η0) =

∫ η0

0

e−τ+ikµ(η−η0)Sdη, (2.77)
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where S is the source function:

S(k⃗, η) ≡ −Φ′ − ikµΨ− τ ′
(
Θ0 + µvb −

1

2
P2 (µ)Θ2

)
(2.78)

By using the spherical harmonics to decompose Eq. (2.77), we obtain (Lyth & Liddle, 2009):

Θl(k⃗, η0) =

∫ η0

0

dηg(η)

(
(Θ0 +Ψ) jl (k (η0 − η))− ivb

djl (k (η0 − η))

d(kη)

+
Θ2

4

(
3
d2jl (k (η0 − η))

d(kη)2
+ jl (k (η0 − η))

))
+

∫ η0

0

dηe−τ (Ψ′ − Φ′)jl (k (η0 − η)) ,

(2.79)

where jl is the spherical Bessel function:

jl (k (η − η0)) = (−i)l
∫ 1

−1

dµ

2
Pl(µ)e

ikµ(η−η0). (2.80)

In addition, we define the visibility function g(η):

g(η) ≡ −τ ′e−τ . (2.81)

CMB angular power spectrum

We use the spherical harmonics to expand Θ:

Θ(x⃗, p̂, η) =
∞∑
l=0

l∑
m=−l

alm(x⃗, η)Ylm(p̂) (2.82)

Due to the stochastic properties of CMB, alm follows the Gaussian distribution whose variance
is Cl:

⟨alm⟩ = 0 ,

⟨alma∗l′m′⟩ = δll′δmm′Cl .
(2.83)

From Eq. (2.82), the two point correlation becomes (Baumann, 2022):

⟨Θ(p̂)Θ(p̂′)⟩ =
∑
lm

∑
l′m′

⟨alma∗l′m′⟩Ylm(p̂)Y
∗
l′m′(p̂′)

=
∑
l

2l + 1

4π
ClPl(p̂ · p̂′).

(2.84)

If we set p̂ · p̂′ = θ , we can write Cl as:

Cl = 2π

∫ 1

−1

dθ⟨Θ(p̂)Θ(p̂′)⟩Pl(θ). (2.85)
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Figure 2.1: One example of Cl.

We define T as (Dodelson & Schmidt, 2020):

T ≡ Θ(k⃗, p̂, η0)

R(k⃗)
, (2.86)

where R is the curvature perturbation, representing the initial condition given by the inflation:

⟨R(k⃗)R∗(k⃗′)⟩ = PR(k⃗)(2π)
3δ

(3)
D (k⃗ − k⃗′) (2.87)

Therefore, Cl can be written:

Cl =
2

π

∫ ∞

0

dkk2PR(k)|Tl(k)|2, (2.88)

where Tl(k) is T decomposed by the Legendre polynomial. One example of Cl is shown in
Fig. 2.1.

2.3 Polarization

2.3.1 CMB E mode and B mode

The polarization is usually described by the Stokes parameters (Komatsu, 2022):

Q = |Ex|2 − |Ey|2

U = 2Re(E∗
xEy),

(2.89)
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where Ex and Ey are components of an electric field E⃗. If we rotate the x- and y-axes counter-
clockwise by an angle ϕ, the Stokes parameters will be come (Baumann, 2022):[

Q′

U ′

]
=

[
cos 2ϕ sin 2ϕ
− sin 2ϕ cos 2ϕ

] [
Q
U

]
, (2.90)

and it can be written in a compact form:

Q′ ± iU ′ = e∓2iϕ(Q± iU), (2.91)

showing that polarization transforms like a spin-2 field. Therefore, we can use spin-weighted
spherical harmonics to describe its decomposition into multipole moments (Zaldarriaga & Sel-
jak, 1997; Kamionkowski et al., 1997b):

Q(n̂)± iU(n̂) =
∑
lm

a±2,lm ±2Ylm(n̂), (2.92)

where n̂ is the observed direction and n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). The relationship be-
tween ±2Ylm and Ylm is (Hu & White, 1997)

±2Ylm =

(
(l − 2)!

(l + 2)!

)1/2(
∂2
θ − cot θ∂θ ±

2i

sin θ
(∂θ − cot θ) ∂ϕ −

1

sin2 θ
∂2
ϕ

)
Ylm (2.93)

To derive this, we need a pair of operators, ð and ð̄. They are spin raising and lowering
operators (Zaldarriaga & Seljak, 1997; Lin & Wandelt, 2006):

(ðsf)
′ =exp(−i(s+ 1)ϕ)(ðsf)

(ð̄sf)
′ =exp(−i(s− 1)ϕ)(ð̄sf)

(2.94)

In addition, the form of operators is:

ðsf(θ, ϕ) = − sins θ

(
∂θ +

i

sin θ
∂ϕ

)
sin−s θsf(θ, ϕ)

ð̄sf(θ, ϕ) = − sin−s θ

(
∂θ −

i

sin θ
∂ϕ

)
sins θsf(θ, ϕ)

(2.95)

We define CMB E and B modes as:

a±2,lm ≡ −(Elm ± iBlm), (2.96)

and thus:

Elm = −(a2,lm + a−2,lm)/2

Blm = −(a2,lm − a−2,lm)/2i,
(2.97)
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Figure 2.2: Examples of CEE
l , CTE

l (left) and CBB
l (right). Here we set r = 0.01.

which shows E-mode is parity-even and B-mode is parity-odd. The polarization power spectra
are written as:

⟨almE∗
l′m′⟩ = CTE

l δll′δmm′

⟨ElmE
∗
l′m′⟩ = CEE

l δll′δmm′

⟨BlmB
∗
l′m′⟩ = CBB

l δll′δmm′

⟨almB∗
l′m′⟩ = CTB

l δll′δmm′

⟨ElmB
∗
l′m′⟩ = CEB

l δll′δmm′

(2.98)

If the primordial universe is parity conserving, then CTB
l = CEB

l = 0. We show examples for
CTE

l , CEE
l and CBB

l in Fig. 2.2. We use two spin-0 quantities Ẽ(n̂) and B̃(n̂) (Zaldarriaga &
Seljak, 1997; Lin & Wandelt, 2006):

Ẽ(n̂) ≡−1

2

(
ð̄2 (Q+ iU) (n̂) + ð2 (Q− iU) (n̂)

)
=
∑
l,m

(
(l + 2)!

(l − 2)!

)1/2

aE,lmYlm(n̂)
(2.99)

B̃(n̂) ≡−1

2i

(
ð̄2 (Q+ iU) (n̂)− ð2 (Q− iU) (n̂)

)
=
∑
l,m

(
(l + 2)!

(l − 2)!

)1/2

aB,lmYlm(n̂)
(2.100)
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2.3.2 Generation of CMB polarization

Scalar perturbation

The polarization generated from the scalar perturbation has a similar form to Eq. (2.74), which
can be written as

Θ′s
P + ikµΘs

P = C , (2.101)

where Θs
P is the anisotropy of polarization distribution from scalar perturbation and Θs

P ≡
Θs

Q + iΘs
U . The only difference is that the gravitational potentials do not appear here because

gravity cannot directly generate the polarization and the gravitational effects are all in the
collision term.

The Boltzmann equation for the polarization generated by scalar perturbation is given by (Bond
& Efstathiou, 1984; Ma & Bertschinger, 1995):

Θ′s
P + ikµΘs

P = −τ ′
(
−Θs

P +
3

4

(
1− µ2

)
Π

)
, (2.102)

where
Π ≡ Θ2 +Θs

P2 +Θs
P0. (2.103)

Then the line-of-sight integration is:

Θs
P (k, µ) =

∫ η0

0

dηeikµ(η−η0)−τ(η)

(
−3

4
τ ′
(
1− µ2

)
Π

)
(2.104)

Then we use the visibility function to write this equation:

Θs
P (k, µ) =

3

4
(1− µ2)

∫ η0

0

dηg(η)eikµ(η−η0)Π (2.105)

Therefore, from Eq. (2.99), we derive Θs
E (Zaldarriaga & Seljak, 1997; Lin & Wandelt, 2006):

Θs
E(k, µ) =

−1

2

(
ð̄Θs

P (k, µ) + ðΘs∗
P (k, µ)

)
=
−3

4

∫ η0

0

dηg(η)Π∂2
µ

((
1− µ2

)2
eikµ(η−η0)

)
,

(2.106)

and Θs
B:

Θs
B(k, µ) =

−1

2i

(
ð̄Θs

P (k, µ)− ðΘs∗
P (k, µ)

)
=0,

(2.107)

which means the scalar perturbation only generates E-mode polarization. Similar to Eq. (2.86),
we define TE as:

TE ≡ Θs
E(k)

R(k⃗)
. (2.108)
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Figure 2.3: One example of the polarization generated by the scalar perturbation. The scalar
perturbation only generates the E-mode polarization.

Therefore the EE power spectrum from scalar perturbation becomes:

CEE,s
l =

2

π

∫ ∞

0

dkk2|TE
l (k)|2PR(k) (2.109)

One example of the polarization generated by the scalar perturbation is shown in Fig. 2.3.

Tensor perturbation

Tensor perturbations can be written as a divergenceless, traceless, symmetric matrix:

hTT
ij =

h+ h× 0
h× −h+ 0
0 0 0

 , (2.110)

where we choose the perturbations to be in the x− y plane. According to Zaldarriaga & Seljak
(1997), we define:

h1 = (h+ − ih×)/
√
2

h2 = (h+ + ih×)/
√
2

(2.111)
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The temperature and polarization from the tensor perturbation are written by (Polnarev, 1985;
Crittenden et al., 1993; Zaldarriaga & Seljak, 1997; Lin & Wandelt, 2006):

Θt
T (k⃗, µ) =

((
1− µ2

)
e2iϕh1(k⃗) +

(
1− µ2

)
e−2iϕh2(k⃗)

)
Θ̃t

T (k, µ)

Θt
P (k⃗, µ) =

(
(1− µ)2 e2iϕh1(k⃗) + (1 + µ)2 e−2iϕh2(k⃗)

)
Θ̃t

P (k, µ),
(2.112)

where k⃗ ∥ ẑ. Θ̃t
T and Θ̃t

P satisfies the Boltzmann equation (Crittenden et al., 1993):

Θ̃t′
T + ikµΘ̃t

T =− h′ − τ ′
(
Θ̃t

T − 1

10
Θ̃t

T0 −
1

7
Θ̃t

T2 −
3

70
Θ̃t

T4 +
3

5
Θ̃t

P0 −
6

7
Θ̃t

P2 +
3

70
Θ̃t

P4

)
Θ̃t′

P + ikµΘ̃t
P =− τ ′

(
Θ̃t

P +
1

10
Θ̃t

T0 +
1

7
Θ̃t

T2 +
3

70
Θ̃t

T4 −
3

5
Θ̃t

P0 +
6

7
Θ̃t

P2 −
3

70
Θ̃t

P4

)
,

(2.113)

where we assume unpolarized gravitational waves and h is given by

ḣ =
ḣ+√
2h+

=
ḣ−√
2h−

(2.114)

Then, the line-of-sight integration becomes (Zaldarriaga & Seljak, 1997; Lin & Wandelt, 2006):

Θt
T (k⃗, µ) =

((
1− µ2

)
e2iϕh1(k⃗) +

(
1− µ2

)
e−2iϕh2(k⃗)

)∫ η0

0

dηeikµ(η−η0)St
T (η, k)

Θt
P (k⃗, µ) =

(
(1− µ)2 e2iϕh1(k⃗) + (1 + µ)2 e−2iϕh2(k⃗)

)∫ η0

0

dηeikµ(η−η0)St
P (η, k),

(2.115)

where

St
T (η, k) = −h′e−τ + g

(
1

10
Θ̃t

T0 +
1

7
Θ̃t

T2 +
3

70
Θ̃t

T4 −
3

5
Θ̃t

P0 +
6

7
Θ̃t

P2 −
3

70
Θ̃t

P4

)
,

St
P (η, k) = −g

(
1

10
Θ̃t

T0 +
1

7
Θ̃t

T2 +
3

70
Θ̃t

T4 −
3

5
Θ̃t

P0 +
6

7
Θ̃t

P2 −
3

70
Θ̃t

P4

)
.

(2.116)

Substituting Eq. (2.116) into Eqs. (2.99) and (2.100), we find (Zaldarriaga & Seljak, 1997; Lin
& Wandelt, 2006):

Θt
E(k⃗, µ) =

−1

2

(
ð̄Θs

P (k, µ) + ðΘs∗
P (k, µ)

)
=(1− µ2)

(
e2iϕh1(k⃗) + e−2iϕh2(k⃗)

) (
−12 + x2(1− ∂2

x)− 8x∂x
) ∫ η0

0

dηe−ixµSt
P (η, k)

Θt
B(k⃗, µ) =

−1

2i

(
ð̄Θs

P (k, µ)− ðΘs∗
P (k, µ)

)
=− (1− µ2)

(
e2iϕh1(k⃗)− e−2iϕh2(k⃗)

) (
8x+ 2x2∂x

) ∫ η0

0

dηe−ixµSt
P (η, k),

(2.117)
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Figure 2.4: One example of the polarization generated by the tensor perturbation. Here we
assume r = 0.01.

where x = −k(η − η0). Similar to Eq. (2.109), the power spectra for tensor perturbation are:

CEE,t
l =

2

π

∫ ∞

0

dkk2|TE,t
l (k)|2PT (k) (2.118)

CBB,t
l =

2

π

∫ ∞

0

dkk2|TB,t
l (k)|2PT (k) , (2.119)

where T t is the transfer function for tensor perturbation

TE,t ≡ Θt
E(k)

2h1

(2.120)

TB,t ≡ Θt
B(k)

2h1

, (2.121)

and PT is the total tensor power spectrum which will be discussed later. One example of the
polarization generated by the tensor perturbation is shown in Fig. 2.4.

2.3.3 Inflationary gravitational waves

The evolution of gravitational waves

To solve Eq. (2.113), we need to derive the evolution of gravitational waves. To get it, we
need to substitute the metric perturbation (2.110) into Eq. (2.1). Under this situation, the
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Christoffel symbol is (Dodelson & Schmidt, 2020):

Γ0
00 = Γ0

i0 = 0

Γ0
ij = Hgij +

a2hTT
ij,0

2

Γi
0j = Hδij +

1

2
hTT
ij,0

Γi
jk =

i

2
(kkh

TT
ij + kjh

TT
ij − kih

TT
jk )

(2.122)

Then the Ricci tensor becomes (Dodelson & Schmidt, 2020):

Rij = Γα
ij,α − Γα

iα,j + Γα
αβΓ

β
ij − Γα

βjΓ
β
iα

= gij

(
ä

a
+ 2H2

)
+

3

2
a2HhTT

ij,0 + a2
hTT
ij,00

2
+

k2

2
hTT
ij .

(2.123)

From R = g00R00 + GijRij, and the equation above, we know that the first-order Ricci scalar
is 0. Therefore, the first-order Einstein equation for gravitational waves is:

a22hTT
ij = −16πGTGW

ij , (2.124)

where 2 is:

2 = − ∂2

∂t2
− 3

ȧ

a

∂

∂t
+

1

a2
∇2, (2.125)

and TGW
ij is the traceless and transverse part of the anisotropic stress.

Inflation

At the time of CMB (z ≃ 1100), the observable universe was remarkably uniform. The problem
is that different regions of the universe observed in the map of CMB were too distant from each
other to have been in causal contact by the time of recombination. If our entire observable uni-
verse originated from a single early causal patch and experienced an epoch of early acceleration,
this would resolve the issue. This epoch is called inflation.

The comoving Hubble radius decreased while the universe underwent accelerated expansion:

d

dt
(aH)−1 = − ä

(ȧ)2
< 0 (2.126)

Here we define the slow-roll parameter as (Baumann, 2022):

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ϵ), (2.127)

where

ϵ ≡ − Ḣ

H2
(2.128)
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From Eq. (2.126), ϵ satisfies:

ϵ = − Ḣ

H2
< 1 (2.129)

In the limit ϵ → 0, the scale factor evolves exponentially:

a(t) = aee
H(t−te), t < te, (2.130)

where te denotes the time at the end of inflation and ae is the scale factor at that point.

To end inflation and transition to a radiation-dominated universe, the simplest approach is to
introduce a scalar field ϕ to govern the inflation process. The energy-momentum tensor for ϕ
is (Dodelson & Schmidt, 2020):

Tα
β = gαν

∂ϕ

∂xν

∂ϕ

∂xβ
− δαβ

(
1

2
gµν

∂ϕ

∂xµ

∂ϕ

∂xν
+ V (ϕ)

)
(2.131)

Therefore, ρ and P are obtained as:

ρ = T 0
0 =

1

2
ϕ̇2 + V (ϕ) (2.132)

P = T i
i =

1

2
ϕ̇2 − V (ϕ) (2.133)

By substituting them into Eq. (2.23), we obtain

ϕ̈+ 3Hϕ̇+ V,ϕ = 0, (2.134)

which is called the Klein-Gordon equation. V,ϕ is ∂V/∂ϕ. By putting ρ and P into Eq. (2.20),
we obtain:

H2 =
8πG

3

(
1

2
ϕ̇2 + V

)
(2.135)

Therefore,
Ḣ = −4πGϕ̇2 (2.136)

In the slow-roll approximation (Baumann, 2022):

1

2
ϕ̇2 ≪ V (2.137)

|ϕ̈| ≪ |Hϕ̇| (2.138)

Then the Friedmann equation (2.135) is:

H ≈ 8πG

3
V, (2.139)

and the Klein-Gordon equation (2.134) is:

3Hϕ̇ ≈ −V,ϕ (2.140)
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Therefore, the slow-roll parameter is:

ϵ = − Ḣ

H2
=

4πGϕ̇2

H2
≈ 1

16πG

(
V,ϕ

V

)2

(2.141)

Gravitational wave production

During inflation, the perturbation is generated by the quantum fluctuation, which means the
average fluctuation is zero but the average square of the fluctuations is not zero and it is called
variance. The variance sets the initial conditions.

For gravitational waves, well before horizon entry, the traceless and transverse part of the
anisotropic stress, TGW

ij , is supposed to vanish. Therefore the right-hand-side of Eq. (2.124) is
equal to 0. In addition, we transform the derivative with respect to t to the derivative with
respect to η so that Eq. (2.124) becomes:

h′′ + 2
a′

a
h′ + k2h = 0, (2.142)

where h is h+ or h×. According to Dodelson & Schmidt (2020), we define:

h ≡ ah√
16πG

(2.143)

By substituting it Eq. (2.142), we get (Dodelson & Schmidt, 2020):

1

a

(
h′′ +

(
k2 − a′′

a

)
h

)
= 0 (2.144)

This form is similar to the evolution of a harmonic oscillator so that we can quantize it as
(Dodelson & Schmidt, 2020):

ĥ(k⃗, η) = v(k, η)âk⃗ + v∗(k, η)â†
k⃗
, (2.145)

where v satisfies:

v′′ +

(
k2 − a′′

a

)
v = 0 (2.146)

Since
a′′

a
≃ −1

a

d

dη

(
a

η

)
≃ 2

η2
, (2.147)

Eq. (2.146) becomes:

v′′ +

(
k2 − 2

η

)
v = 0 (2.148)

The solution is (Dodelson & Schmidt, 2020):

v =
e−ikη

√
2k

(
1− i

kη

)
. (2.149)
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The variance is

⟨ĥ†(k⃗, η)ĥ(k⃗′, η)⟩ =16πG

a2
|v(k, η)|2(2π)3δ3D(k⃗ − k⃗′)

=
16πG

a2
1

2k3η2
(2π)3δ3D(k⃗ − k⃗′)

(2.150)

We define the tensor power spectrum as:

⟨ĥ†(k⃗, η)ĥ(k⃗′, η)⟩ ≡ Ph(k, η)(2π)
3δ3D(k⃗ − k⃗′) (2.151)

and dimensionless power spectrum as:

∆2
h(k, η) ≡

k3

2π2
Ph(k, η) (2.152)

We define the total power spectrum as:

⟨hTT
ij (k⃗, η)

(
hTT
ij

)∗
(k⃗′, η)⟩ ≡ (2π)3δ3D(k⃗ − k⃗′)PT (k) (2.153)

Since

⟨hTT
ij (k⃗, η)

(
hTT
ij

)∗
(k⃗′, η)⟩ = 2⟨h+(k⃗, η)h

∗
+(k⃗, η)⟩+ 2⟨h×(k⃗, η)h

∗
×(k⃗, η)⟩, (2.154)

PT is then equal to 4Ph. We can write it as the power law form:

PT (k) ≡ 2π2ATk
−3

(
k

kp

)nT

, (2.155)

where AT is the tensor amplitude, nT is the spectral index and kp is the pivot scale.

Tensor-to-scalar ratio

For the scalar perturbation, the power spectrum of the gauge-invariant curvature perturbation
R is given as (Dodelson & Schmidt, 2020):

PR(k) =
8πGH2

9k3ϵ
, (2.156)

and the dimensionless version is:

∆2
R(k, η) ≡

k3

2π2
PR(k, η) (2.157)

In addition, it can also be written in the power law form:

PR(k) ≡ 2π2Ask
−3

(
k

kp

)ns−1

. (2.158)

Here, As represents the variance of curvature perturbations within a logarithmic interval of
wavenumbers centered around the pivot scale kp and ns is the scalar spectral index. Then we
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define the tensor-to-scalar ratio r as (Kamionkowski & Kovetz, 2016):

r ≡ ∆2
T

∆2
R

=
AT

As

= 16ϵ (2.159)

By using Eq. (2.141),

r =
1

πG

(
V,ϕ

V

)2

(2.160)

Therefore, the observation of r can provide a constraint on the energy density of inflation.

2.4 Reionization

During the reionization epoch, since the UV light emitted by the first stars and galaxies ionized
the neutral hydrogen in the IGM, a large number of free electrons were generated. Free electrons
released during this epoch scatter CMB photons again.

Since the probability per unit time for a photon to scatter with an electron is neσT , the optical
depth τ defined in Eq. (2.73) is the photon was scattered between η and η0. Because during
dt, the probability that the photon was not scattered is 1− σTnedt, the photon traveled freely
since time t is P (t) which satisfies (Lyth & Liddle, 2009):

P (t) = exp

(
−
∫ t0

t

neσTdt

)
= e−τ(t), (2.161)

and
dP

dt
= −dτ

dt
P = −dτ

dt
e−τ ≡ g(t) (2.162)

Comparing with Eq. (2.81), we find
g(η) = ag(t), (2.163)

and g(t) is the visibility function with the variable t. From Eq. (2.162), we know that g(t)dt
is the probability that a CMB photon observed is currently scattered in the time interval dt
at time t and has traveled freely since then. One example is shown in Fig. 2.5, where we can
see two peaks. One peak is the hydrogen recombination and another corresponds to the time
of reionization. Therefore, during the reionization epoch, fraction e−τre of photons were not
scattered and from the last scattering surface, while fraction 1 − e−τre of photons were from
other direction and scattered into the line of sight, where τre is defined at the time of the end
of the reionization. Therefore the temperature we observed is (Dodelson & Schmidt, 2020):

T (1 + Θ)e−τre + T (1− e−τre) = T (1 + Θe−τre), (2.164)

where Θ is the temperature anisotropy. This only affects the small-scale temperature anisotropy
(within the horizon size at rescattering). However, for the polarization, it is not the same. The
polarization spectra are sensitive to the epoch of the last scattering (Hu & White, 1997). The
location of the peak depends on the horizon size at the last scattering (Efstathiou, 1988). This
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Figure 2.5: One example of the visibility function. The first peak is at the recombination epoch
and the second peak is at the reionization epoch.

is because we can write Eq. (2.105) as (Zaldarriaga, 1997):

Θs
P =

3

4
(1− µ2)

(∫ η0

ηreio

dηg (η) eikµ(η−η0)Π+

∫ ηreio

0

dηg (η) eikµ(η−η0)Π

)
, (2.165)

where ηreio is the conformal time of the start of reionization. Since g(η) is a function with two
peaks, we simplify Eq. (2.165) as:

Θs
P ≈ 3

4
(1− µ2)

(
g (ηreio) e

ikµ(ηreio−η0)Π+ g (ηrec) e
ikµ(ηrec−η0)Π

)
. (2.166)

In Π, defined in Eq. (2.76), the biggest contribution is from the quadrupole of the temperature
anisotropy Θ2. For the electron, on a scale θ ∼ 1/l is mainly from k−1 ∼ θ×(distance to last
scattering surface) (Dodelson & Schmidt, 2020). Therefore, at ηreio, the quadrupole (l = 2)
observed by an electron is mainly contributed by k−1 ∼ 1/2(ηreio − ηrec). Then the polarization
we observe now generated from reionization is the scale θ ∼ k−1/(η0 − ηreio), so the position of
the peak is:

l ∼ 2
η0 − ηreio
ηreio − ηrec

, (2.167)

which corresponds to the large scale. The case of the polarization generated by tensor per-
turbation is similar to the scalar perturbation case. Θt

P is mainly contributed by Θt
T2, so the

position of the peak is similar to Eq. (2.167). On the other hand, the amplitude of the reion-
ization depends on τ which is shown in Fig. 2.6. From them, we observe that higher τ makes
the reionization bump much larger but only suppresses other bumps slightly.
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Figure 2.6: The dependence of reionization bump height on τ . The left figure is EE power
spectra and the right figure is BB power spectra (assuming r = 0.01).



Chapter 3

Forecasting method and reionization
models

3.1 Forecast method

3.1.1 χ2

In this study, we want to use the maximum likelihood estimation method to estimate the
best fit and the uncertainty of parameters we are interested in: the tensor-to-scalar ratio
(r), representing the energy scale of the inflation models, and the zreio measuring where the
reionization fraction is half of its maximum. We fix other parameters based on the results
from the Planck collaboration 1. The likelihood L(Ĉl|Cl) follows the Wishart distribution
(Katayama & Komatsu, 2011):

χ2
l ≡ −2 lnL(Ĉl|Cl) = (2l + 1)

(
Ĉl

Cl

+ ln(Cl)−
2l − 1

2l + 1
ln(Ĉl)

)
, (3.1)

where Ĉl is the power spectrum derived from the observation data, we used the CLASS package
to simulate it here. The Cl(r, zzeio) is the power spectrum from the theory, parameterized by r
and zreio.

3.1.2 Fisher

Before calculating the uncertainty by χ2, we first estimate the uncertainty by the Fisher infor-
mation matrix. The Fisher matrix is the curvature of the likelihood:

Fij ≡ −
〈
∂2 lnL

∂pi∂pj

〉 ∣∣∣
best fit

, (3.2)

1https://wiki.cosmos.esa.int/planck-legacy-archive/images/b/be/Baseline_params_table_

2018_68pc.pdf

35
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Parameter Description Fiducial Value

r Tensor-to-scalar ratio 0.01, 0.001
τ (zreio) Optical depth (Redshift at xe = 0.5) 0.054 (zreio = 7.249), 0.08 (zreio = 9.367)

Table 3.1: Free parameters in the analysis

where ⟨·⟩ means the ensemble average, and ⟨Ĉl⟩ = ⟨Cl⟩. By substituting Eq. (3.1) into Eq. (3.2)
and assuming the power spectra are parametrized by a set of parameters p⃗ (in this study,
p⃗ = (r, zreio)), the cosmological information on these parameters is quantified by the Fisher
matrix (Namikawa et al., 2010):

Fij =
lmax∑
l=2

2l + 1

2
fskyTr

(
C−1

l (p⃗)
∂Cl

∂pi
(p⃗)C−1

l (p⃗)
∂Cl

∂pj
(p⃗)

)
, (3.3)

where the quantity Cl is the covariance matrix:

Cl =

[
CBB

l CEB
l

CEB
l CEE

l

]
. (3.4)

We assume the standard cosmology where CEB
l = 0. In Eq. (3.3), we replace the derivatives of

the Cl with a finite difference:

∂Cl

∂pi
(p⃗) ≃ Cl(pi +∆pi)− Cl(pi −∆pi)

2∆pi
. (3.5)

3.2 Experimental model

We use the CLASS package (Blas et al., 2011) to simulate observation data Ĉl in Eq. (3.1).
We generate different kinds of simulated data by using various models. Here we call them
fiducial models. To simulate observation data Ĉl which can be used to study the uncertainty of
tensor-to-scalar ratio (r) and reionization history (described by xe(z)), we vary r and modify
the shape of xe. As for the theory model (Cl), we assume the shape of xe as the tanh shape
and vary r and zreio to fit the fiducial model. Table 3.1 describes the parameters we used. An
example of the tanh shape reionization history is shown as the blue line in Fig. 3.2. This section
will list the noise for the LiteBIRD telescope and the fiducial models we used in this study. We
will start from the exponential model, which is most similar to the tanh shape, and gradually
make the shape of the reionization history more and more different from the tanh shape.

3.2.1 Noise

The noise angular power spectra is described as (Namikawa et al., 2010):

Nl ≡
(

σ

TCMB

π

10800

)2

exp

[
l(l + 1)

8 ln 2

(
θ

π

10800

)2]
, (3.6)
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Figure 3.1: Noise power spectrum. We also plot the EE and BB power spectra here. The noise
power spectrum increases quickly on a small scale and becomes much larger than the EE and
BB power spectra.

where the quantity θ is the beam size in unit of arcmin, σ is the noise level in polarization
map in unit of µK-arcmin, and TCMB = 2.725 × 106 µK is the CMB black-body temperature.
We assume a LiteBIRD-like experiment where θ = 30 arcmin and σ = 2µK-arcmin. The noise
power spectrum for l ≤2000 is shown in Fig. 3.1. Due to the effect of the beam, noise increases
rapidly at small scales.

3.3 Reionization model

3.3.1 Exponential model

First, we set the exponential model as the fiducial model from the CAMB package (Lewis et al.,
2000), and it can be described as 2:

xe(z) =


xe,before z > zstart,

f exp

(
−λ

(z − zc)
3/2

1 + ∆z
(z−zc)2

)
+ xe,before + xe,He zc < z < zstart,

xe,after + xe,He z < zc,

(3.7)

2The definition can be found from the source code of the CAMB package: https://github.com/cmbant/

CAMB/blob/master/fortran/reionization.f90 (line 380-403)
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Figure 3.2: Free electron fraction (xe) as the function of redshift (z), for the tanh model
(blue line), exponential model (orange line), and double reionization model (green line). We
set zreio = 7.6711 for the tanh model and zreio = 7.29 for the exponential model to keep
the optical depth (τ) as 0.054 matching the result from the Planck collaboration. For the
double reionization model, we set three points (z, xe) = {(6, 1.08), (8, 0.13), (9.6, 0.845)} to
make τ = 0.054.

where the zc is the redshift that the reionization completed, we fix it as 6.1. The evolution rate
in the exponential λ is:

λ =
− ln 0.5

(zreio − zc)2/3
. (3.8)

f is:
f = xe,after − xe,before. (3.9)

xHe is:

xe,He =
1

2

(
1 + tanh

(
zHe − z

∆zHe

))
× fHe. (3.10)

In the CLASS package, fHe is defined as:

fHe =
YHe

mHe

mH
× (1− YHe)

, (3.11)

where YHe is the Helium fraction, which is 0.25 according to the observation of primordial Helium
abundance. Here, ∆z and ∆zHe are the widths of the Hydrogen and Helium reionization.zHe is
similar to the zreio in the Hydrogen reionization.We fix them here for simplicity.

In summary, the exponential model is described from Eq. (3.7) to Eq. (3.11). We only vary
the zreio among them to modify the shape of the exponential reionization history and fix cos-
mological parameters are Planck results and other free parameters as the default value in the
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Figure 3.3: The process to generate random xe model. We generate three random redshift
points within 5 ∼ 22, among them z1 is the end of the reionization and xe(z1) is 1.08 which
corresponds to the Helium reionization. We also generate two random numbers xe(z2) and
xe(z3) within 0 ∼ 1. After that, we use the tanh function to connect them. We consider two
cases: τ0 = 0.054 and τ0 = 0.08. To generate a reionization history with τ = 0.08, we will accept
these numbers if |τ − τ0| < 0.001. For τ = 0.054, we will also verify this model consistent with
Planck’s result (Tristram et al., 2024).

CLASS package. The orange line in Fig. 3.2 shows an example of exponential reionization.

3.3.2 Double reionization model

Another model we want to check is the double reionization model from Cen (2003). We set
three points (z, xe) and use the tanh function to connect them. The green line in Fig. 3.2 shows
an example of double reionization.

3.3.3 Random xe model

As shown in Fig. 3.3, to test whether the exotic reionization history will affect the constraints
on r, we generate the parametrized reionization history as a function of z using random points.
We generated 20 random xe models for τ = 0.054 and τ = 0.08 respectively.



Chapter 4

Results

4.1 Fisher analysis results

For the fiducial exponential model, we estimate the uncertainties of the tensor-to-scalar ratio (r)
and the redshift at the free electron fraction xe=0.5, marked as zreio. We consider the τ = 0.054
(zreio = 7.249) consistent with the Planck result, and higher τ set as 0.08 (zreio = 9.367).
Besides, we set r as 0.01 and 0.001. These parameters are summarized in Table 3.1. We use
the full power spectra (here we set l < 2002), and we have σr and σzreio in Table 4.1 from the
Fisher analysis. We find that σr increases as r or zreio increases since the power spectra for
higher r or higher zreio are larger.

4.2 χ2 results

In this section, we show the best fit and the uncertainties of the parameters by maximizing the
likelihood L(Ĉl|Cl), i.e. minimizing χ2 in equation 3.1.

4.2.1 The exponential model

We set the exponential model described in Eq. (3.7) as our fiducial model. Its shape is shown as
the orange line in Fig. 3.2. The fiducial values, the best-fit parameters, and their uncertainties
are summarized in Table 4.2. The best-fit values are from the point (r, zreio) with the maximum
posterior value. We fit the marginalized 1D posterior with the Gaussian distribution to obtain
the uncertainty σ. The posterior distribution for the baseline case with r = 0.01 and τ = 0.054
is shown in Fig. 4.1. The posterior distributions for r and zreio can be fitted well by Gaussian
distribution. For comparison, we show the posterior distributions with r = 0.001 in Fig. 4.2
and τ = 0.08 in Fig. 4.3. The case with r = 0.001 and zreio is shown in Fig. A.1. We found
that the uncertainties are closed with the uncertainties by the Fisher analysis in Table 4.1. In
addition, the bias to r is very small. Only when r = 0.001 and τ = 0.08, the bias to r will be
around 0.25σr. In other cases, the bias to r is less than 0.1σr. The bias to r when r = 0.01 is
smaller than r = 0.001, and when τ = 0.054 is smaller than τ = 0.08. Besides, the shape of

40
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σr σreio

r
zreio 7.25 9.37 7.25 9.37

0.01 3.41× 10−4 3.37× 10−4 3.49× 10−2 2.95× 10−2

0.001 1.83× 10−4 1.61× 10−4 3.50× 10−2 2.95× 10−2

Table 4.1: The prediction of the 1σ uncertainties on r and zreio from the Fisher matrix using
the full power spectra.

τ r Best-fit r Best-fit zreio σr σzreio

0.054 0.01 1.00× 10−2 7.64 4.18× 10−4 4.88× 10−2

0.054 0.001 0.991× 10−3 7.64 2.22× 10−4 4.88× 10−2

0.080 0.01 0.997× 10−2 10.1 4.14× 10−4 4.35× 10−2

0.080 0.001 0.952× 10−3 10.1 1.93× 10−4 4.35× 10−2

Table 4.2: Summary of the best-fit parameters and uncertainties for the exponential model.

τ r Best-fit r Best-fit zreio σr σreio

0.054 0.01 0.998× 10−2 7.64 4.19× 10−4 4.88× 10−2

0.054 0.001 0.952× 10−3 7.64 2.23× 10−4 4.88× 10−2

0.080 0.01 1.00× 10−2 10.1 4.15× 10−4 4.34× 10−2

0.080 0.001 0.942× 10−3 10.1 1.94× 10−4 4.34× 10−2

Table 4.3: Same as Table 4.2 but for the double reionization model.

τ r Best-fit r Best-fit zreio σr σreio

0.080 0.001 0.778× 10−3 10.1 1.93× 10−4 4.31× 10−2

Table 4.4: Same as Table 4.2 but for the random xe model which introduces a non-negligible
bias.

the posterior distribution of r for r = 0.001 is different from the Gaussian distribution shown
in Fig. 4.2.

We also compare the shape of xe and power spectra with the fiducial and best-fit models. xe is
shown in Fig. 4.4, and power spectra are shown in Fig. 4.5 and Fig. 4.6 (for the τ = 0.08 and
r = 0.001 case, their power spectra are shown in Fig. A.2). Given the same τ , the xe and EE
power spectra shapes in the best-fit models remain almost the same across different r values.
From Fig. 4.4, in the exponential model, the reionization process occurs earlier and is relatively
smoother. When τ = 0.054, there is a slight difference between the exponential model and the
tanh model; however, at τ = 0.08, the distinction between the two models becomes apparent.
As a result, the difference in EE and BB power spectra is smaller when τ = 0.054 than when
τ = 0.08. As for BB power spectra, since the lensing effect dominates on the small scale, the
reionization bump is small when r = 0.001, making it harder to distinguish two models in the
lowest lines in Fig. 4.5 and 4.6.
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Figure 4.1: The posterior distribution of r and zreio for the exponential model with r = 0.01 and
τ = 0.054. The blue lines represent the posterior distribution, while the orange lines represent
the Gaussian fit. In the contour plot, yellow indicates high probability and blue indicates low
probability.

4.2.2 The double reionization model

We use the double reionization model described in the previous chapter. We fix three points
(z, xe) = {(6, 1.08), (8, 0.13), (9.6, 0.845)} to set τ = 0.054 and (z, xe) = {(6.8, 1.08), (9.5, 0.31),
(12.2, 0.92)} to set τ = 0.08. The fiducial values, their best-fit parameters, and uncertainties are
summarized in Table 4.3. To compare with the baseline case, we show the posterior distribution
with r = 0.01 and τ = 0.054 for the double reionization model in Fig. 4.7, and other cases are
shown in the Fig. A.3, Fig. A.4 and Fig. A.5. We can find that the biases to r are still small,
which are O(0.01) × σr for r = 0.01 and O(0.1) × σr for r = 0.001. Interestingly, compared
to the results for the exponential model shown in table 4.2, the values of σr are smaller, while
the values of σzreio are larger in every case. The posterior distributions are similar to that for
the exponential models, where the posterior distribution of r is different from the Gaussian
distribution when r = 0.001.

xe for the double reionization model is shown in Fig. 4.8 and power spectra are shown in Fig. 4.9.
Power spectra with r = 0.001 and τ = 0.08 are shown in Fig. A.6 and Fig. A.7, respectively. We
find that as previously noted, for the same τ , the shapes of the xe and EE power spectra in the
best-fit models show little variation across different r values. By comparing Fig. 4.5 and Fig. 4.9,
we find that the best-fit power spectra for the double reionization model deviate more from the
fiducial model compared to the exponential model. This deviation is particularly pronounced
in the reionization bump of the EE and BB power spectra, as well as in the trough of the EE
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Figure 4.2: Same as Fig. 4.1 but with r = 0.001.

power spectra, especially when τ = 0.08 in Fig. A.7. However, these deviations are all within
the error bars. For the reionization bump, the scale corresponding to the peak is slightly larger
in the tanh and exponential models compared to the double reionization model. This difference
might be attributed to the earlier occurrence of reionization in the double reionization model,
related to the distance between CMB photons and the electrons ionized during the reionization
epoch shown in Eq. (2.167).

4.2.3 Random xe model

The random xe models that we generated are shown in Fig. C.1, and power spectra are shown
in Fig. C.2. We show the distribution of the Euclidean distance in Fig. 4.10, defined as:

d =

√√√√1500∑
i=1

(xe,model(zi)− xe,tanh(zi))
2 , (4.1)

where z is from 0 to 22.3, divided into 1500 redshift bins. The Euclidean distance serves as a
quantitative measure of the similarity between the random models and the tanh model, allowing
us to evaluate how closely the random models approximate the behavior of the tanh function.
Fig. 4.10 provides a view of how the Euclidean distances between random models and the tanh
model vary under two different parameter settings of τ . It shows that the distances tend to be
higher and more variable when τ = 0.08 compared to τ = 0.054. Fig. 4.11 shows the distribution
of biases introduced by fitting with the wrong theory model. For both τ = 0.054 and τ = 0.08,
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Figure 4.3: Same as Fig. 4.1 but with τ = 0.08.

when r = 0.01, the distribution is tightly clustered with a low median and interquartile range.
However, when r = 0.001, the distribution broadens with a higher median compared to r = 0.01.
Notably, for τ = 0.08 and r = 0.001, the distribution becomes significantly broader, exhibiting
a higher median and greater variability, with a prominent outlier. The most striking finding is
that the largest bias ∆r can exceed 1σr, a deviation that is far from negligible and demands
serious attention. Its shape is shown in Fig. 4.12, and the posterior distribution and power
spectra for this case are shown in Fig. 4.13 and Fig. 4.14. The best-fit values and uncertainties
are summarized in Table 4.4. From Fig. 4.12, we see that the random xe model started the
reionization epoch much earlier than the best-fit tanh model, and we can also see the smaller-
scale reionization peak in Fig. 4.14. Fortunately, despite introducing a non-negligible bias to
r, the EE power spectrum, especially the trough in it, provides a clear distinction between
the models. The best-fit EE power spectrum significantly deviates from the fiducial EE power
spectrum, allowing for effective differentiation.
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Figure 4.4: The free electron fraction xe for the exponential model with τ = 0.054 (left) and
τ = 0.08 (right). The blue lines represent xe for the fiducial models, the orange lines represent
xe for the best-fit model with r = 0.01, and the green lines represent xe with r = 0.001. The
orange lines and green lines are almost overlapping.
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Figure 4.5: EE and BB power spectra with τ = 0.054 for the exponential model. The blue line
is the fiducial EE power spectrum, the red line is the fiducial BB power spectrum with r = 0.01
and the brown line is the fiducial BB power spectrum with r = 0.001. The orange line and the
green line are the best-fit EE power spectra, and they are almost overlapping. The purple and
pink lines are the best-fit BB power spectra with r = 0.01 and r = 0.001, respectively.
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Figure 4.6: EE and BB power spectra with τ = 0.08 and r = 0.01 for the exponential model.
Blue and green lines are the fiducial EE and BB power spectra, while orange and red lines are
the best-fit power spectra.
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Figure 4.7: Same as Fig. 4.1 but for the double reionization model.
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Figure 4.8: Same as Fig. 4.1 but for the double reionization model.
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Figure 4.9: Same as Fig. 4.6 but for the double reionization model and τ = 0.054.
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Figure 4.10: This box plot illustrates the distribution of Euclidean distance between random xe

models and the tanh model with τ = 0.054 (left) and τ = 0.08 (right). The orange line within
each box represents the median Euclidean distance. The boxes represent the interquartile range
(IQR), which contains the middle 50% of the data. The whiskers extend to the minimum and
maximum values within 1.5 times the IQR from the first and third quartiles, respectively.

= 0.054, r = 0.01 = 0.054, r = 0.001 = 0.08,r=0.01 = 0.08,r=0.001
0.0

0.2

0.4

0.6

0.8

1.0

1.2

|
r/

r|

Figure 4.11: This box plot illustrates the distribution of the normalized absolute biases |∆r/σr|
for different combinations of the parameters τ and r. The four groups on the x-axis represent
the parameter settings: τ = 0.054, r = 0.01, τ = 0.054, r = 0.001, τ = 0.08, r = 0.01, and
τ = 0.08, r = 0.001.
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Figure 4.12: The free electron fraction xe for the random xe model which introduces a non-
negligible bias with r = 0.001 and τ = 0.08. The blue lines represent xe for the fiducial models,
the orange lines represent xe for the best-fit model.
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Figure 4.13: Same as Fig. 4.4 but for the random xe model which introduces a non-negligible
bias with r = 0.001 and τ = 0.08.
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Figure 4.14: EE and BB power spectra with τ = 0.08 and r = 0.001 for the random xe model
which introduces a non-negligible bias. Blue and green lines are the fiducial EE and BB power
spectra, while orange and red lines are the best-fit power spectra.



Chapter 5

Discussion

5.1 Compare the role of different angular scales in con-

straining the tensor-to-scalar ratio

5.1.1 Exponential model

To discuss the role of the large-scale power spectra, we consider only using the large scale of
the power spectra (ℓ < 10). First, we calculate the uncertainties by only the Fisher analysis.
The values of σr are given in Table 5.1, and σzreio in Table 5.2. Then, we also use the maximum
likelihood estimate to get the best-fit parameters and their uncertainties. They are summarized
in Table 5.3. To compare with the baseline case, we show the posterior distribution with
r = 0.01 and τ = 0.054 in Fig. 5.1, and other cases are shown in Fig. B.2, Fig. B.1, and
Fig. B.3, respectively. We find that the uncertainties are consistent with the Fisher analysis.
Without the small scales, the uncertainties in zreio increase by an order of magnitude in every
case. Additionally, the uncertainties in r increase by an order of magnitude when r = 0.01.
Furthermore, the shapes of the 1D posterior distribution for all parameters are non-Gaussian,
and all have a long tail toward large values of r or zreio. Furthermore, the shapes of the 1D
posterior distributions for all parameters are non-Gaussian, exhibiting long tails toward larger
values of r or zreio. When using only very large scales (ℓ < 10), the parameters exhibit significant
degeneracy. This is evident from the elongated shape of the contour in the joint posterior plot,
indicating a strong correlation between zreio and r. Interestingly, although the uncertainties
increase by an order of magnitude, the biases change only slightly. In addition, the best-fit
value of r is smaller than when using the full power spectra.

EE and BB power spectra are almost the same as the results when using full power spectra.

r
zreio 7.249 9.367

0.01 1.5113× 10−3 1.3366× 10−3

0.001 2.7342× 10−4 2.1365× 10−4

Table 5.1: The prediction of σr from the Fisher matrix using only the large-scale power spectra.
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r
zreio 7.249 9.367

0.01 1.8764× 10−1 2.0105× 10−1

0.001 2.0551× 10−1 2.2101× 10−1

Table 5.2: The prediction of σzreio from the Fisher matrix using only the large-scale power
spectra.

τ r Best-fit r Best-fit zreio σr σreio

0.054 0.01 1.00× 10−2 7.63 2.10× 10−3 2.86× 10−1

0.054 0.001 0.986× 10−3 7.63 3.45× 10−4 2.87× 10−1

0.080 0.01 0.920× 10−2 10.2 1.78× 10−3 3.48× 10−1

0.080 0.001 0.904× 10−3 10.2 2.53× 10−4 3.50× 10−1

Table 5.3: Summary of best-fit parameters and uncertainties (ℓ < 10) for the exponential
model.

τ r Best-fit r Best-fit zreio σr σreio

0.054 0.01 0.966× 10−2 7.64 1.84× 10−3 6.22× 10−2

0.054 0.001 0.894× 10−3 7.64 3.24× 10−4 6.22× 10−2

0.080 0.01 0.959× 10−2 10.14 1.61× 10−3 5.55× 10−2

0.080 0.001 0.904× 10−3 10.14 2.46× 10−4 5.55× 10−2

Table 5.4: Summary of best-fit parameters and uncertainties when cutting only BB power
spectrum for the double reionization model.

τ r Best-fit r Best-fit zreio σr σreio

0.054 0.01 0.945× 10−2 7.70 2.02× 10−3 2.90× 10−1

0.054 0.001 0.907× 10−3 7.70 3.24× 10−4 2.90× 10−1

0.080 0.01 0.875× 10−2 10.4 1.69× 10−3 3.56× 10−1

0.080 0.001 0.843× 10−3 10.4 2.35× 10−4 3.56× 10−1

Table 5.5: Summary of best-fit parameters and uncertainties (ℓ < 10) for the double reionization
model.

For τ = 0.054 and r = 0.01, they are shown in Fig. 5.2, while other cases are shown in Fig. B.4
and Fig. B.5, respectively.

Double reionization model

For the double reionization model, we consider two scenarios for comparison: cutting only the
BB power spectra (keeping ℓ < 10 for BB power spectra) and cutting both the EE and BB
power spectra (keeping ℓ < 10 for both EE and BB power spectra). The results of the former are
presented in Table 5.4, and the latter are presented in Table 5.5. To compare with the baseline,
we show the posterior distribution with τ = 0.054 and r = 0.01 for the former in Fig. 5.3, and
the latter in Fig. 5.4. We observe that the uncertainties in zreio increase only slightly when
we cut the BB power spectra, but increase significantly when we cut both BB and EE power
spectra. Besides, the 1D posterior distribution of zreio becomes non-Gaussian after cutting both
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Figure 5.1: Same as Fig. 4.1 but only using very large scales (ℓ < 10).

BB and EE power spectra. This indicates that zreio is primarily constrained by the EE power
spectra. Conversely, when only the BB power spectra are cut, σr increases substantially for
r = 0.01, and the bias in r increases significantly for r = 0.001. This suggests that the BB
power spectra play a crucial role in constraining r. The best-fit value of r generally decreases
as fewer power spectra are used to constrain it. Similar to when we use the full power spectra,
using only the large scale power spectra results in a larger σr compared to the exponential case,
while σzreio is smaller.

EE power spectra and BB power spectra for τ = 0.054 and r = 0.01 are shown in Fig. 5.5
(cutting only BB power spectrum) and Fig. 5.6 (cutting both EE and BB power spectra).
Other cases are shown in Fig. B.9, Fig. B.10, Fig. B.14, and Fig. B.15. Compared to using
the full power spectra, constraining r and zreio with only large-scale BB power spectra (keeping
ℓ < 10 for BB power spectra) results in a smaller best-fit r. After also cutting the small-scale
EE power spectra, the best-fit r decreases further, while the best-fit zreio increases. Similar to
using the full power spectra, when using only large-scale power spectra, the best-fit r is smaller
for the double reionization model than for the exponential model. Figures 5.7, 5.8, and 5.9
illustrate this. In each figure, the τ values for the three models are the same. For all of them,
the tanh model shows the largest bump size, whereas the double reionization model shows the
smallest bump size. Consequently, using the tanh model to fit these data typically results in a
smaller r to match the lower bump of the tanh model. Moreover, the double reionization model
has a lower peak. When fitting with the tanh model, r needs to be decreased more significantly
than with the exponential model. Thus, both with the full power spectra and the large-scale
power spectra, the best-fit r for the double reionization model is smaller than that for the
exponential model. The large-scale BB power spectra are dominated by the reionization bump,
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Figure 5.2: Same as Fig. 4.6 but only using very large scales (ℓ < 10) and τ = 0.054.

so after cutting the BB power spectra, the best-fit r decreases to align with the lower bump by
the tanh model. Furthermore, the reionization time for the tanh model is the latest, while for
the double reionization model, it is the earliest, corresponding to the peak positions shown in
Fig. 5.7. To fit an earlier reionization, the best-fit zreio increases. Therefore, the best-fit zreio for
the double reionization model is larger than that for the exponential model, both when using
the full power spectra and the large-scale power spectra. Comparing Table 5.4 and Table 5.5,
after cutting the EE power spectra, the best-fit r decreases further. This is because, to fit the
earlier reionization, zreio increases, causing τ for the tanh function to increase and produce a
larger reionization bump. Consequently, to fit the large-scale BB power spectra, the best-fit r
decreases again.

5.2 Summary

In this study, we examined how the reionization history influences constraints on the tensor-
to-scalar ratio (r), a parameter related to the energy scale of cosmic inflation. Reionization
introduces a bump in the large-scale B-mode and E-mode CMB polarization spectra, affecting
power spectra shapes. The reionization history can affect the shape of power spectra, but it is
poorly constrained. Therefore, We generated mock data using various reionization histories and
fitted them with a tanh-shaped reionization model. The posterior distributions were calculated
to assess uncertainties and biases, and the contributions of different multipoles to the constraints
were analyzed.

Our results indicate that for exponential and double reionization models, the bias is minimal.
Even when using only large-scale power spectra, the bias remains low, though the best-fit r tends
to be smaller than the fiducial value due to the higher bump in the tanh model. Additionally,
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Figure 5.3: Same as Fig. 4.1 but for the double reionization model and cutting only BB power
spectrum.

random xe models showed that an incorrect reionization history could lead to significant bias in
r, particularly when r is small and τ is large. However, large-scale EE power spectra can help
exclude incorrect models. These findings underscore the importance of accurately modeling
reionization history to avoid biases in r estimation. Future research should focus on refining
reionization models and exploring their impacts on cosmological parameters further.

5.3 Future Work

While our study has provided significant insights into how reionization history affects con-
straints on the tensor-to-scalar ratio (r), several areas remain underexplored. Addressing these
gaps could significantly advance our understanding of the early universe.

Firstly, although we find that the bias in r can exceed 1σr, it remains unclear what specific
features in the reionization history contribute to this large bias. To investigate this, we can
generate more reionization histories parameterized by additional random points and establish
statistical parameters to identify the relationship between these parameters and bias in r.
Additionally, dividing xe into several redshift bins will allow us to study the contributions of
xe at different redshifts to the power spectra more precisely.

Secondly, we find that the large-scale EE power spectra are effective in excluding exotic reion-
ization models. Therefore, the contribution of large-scale EE power spectra warrants further
investigation. In this study, we only discussed the role of very large-scale EE power spectra
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Figure 5.4: Same as Fig. 5.1 but for the double reionization model.

(the reionization bump), but it is also necessary to examine the contribution from the trough
at l ∼ 10 − 30. In our analysis, we fixed cosmological parameters, including the scalar ampli-
tude, As. By using the temperature power spectrum, we can tightly constrain a combination of
cosmological parameters, such as Ase

−2τ . In future work, we should fix the small-scale power
spectrum amplitude, Ase

−2τ .

Thirdly, as mentioned in the introduction, matter-sourced inflation models can also amplify
the reionization bump. This amplification increases the uncertainty caused by the reionization
history. Therefore, further study of these scenarios is essential.

Lastly, this work did not account for foreground contamination. In practice, results will be in-
fluenced by residuals left after foreground cleaning and delensing. The impact of these residuals
introduces additional uncertainties that must be studied further. It is essential to assess the
magnitude of these effects to ensure that the derived constraints on r remain robust. Future
work should include detailed modeling of foreground contamination and its mitigation to refine
the accuracy of cosmological parameter estimates.
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Figure 5.5: Same as Fig. 5.2 but for the double reionization model and cutting only BB power
spectrum.
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Figure 5.6: Same as Fig. 5.2 but for the double reionization model.
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Figure 5.7: The very large-scale EE power spectra for τ = 0.054 (left) and τ = 0.08 (right).
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Figure 5.8: The very large-scale power spectra for τ = 0.054 (left) and τ = 0.08 (right) for
r = 0.01.
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Figure 5.9: The very large-scale power spectra for τ = 0.054 (left) and τ = 0.08 (right) for
r = 0.001.



Appendix A

Full power spectra analysis results

We include figures not shown in the main text here.

A.1 The exponential model

The posterior distribution for τ = 0.08 and r = 0.001 is shown in Fig. A.1. EE and BB power
spectra are shown in Fig. A.2.

A.2 The double reionization model

The posterior distributions for τ = 0.08, r = 0.01, τ = 0.054, r = 0.001, τ = 0.08, r = 0.001
are shown in Fig. A.4, Fig. A.3, and Fig. A.5, respectively. EE and BB power spectra with
τ = 0.054 and r = 0.001 are shown in Fig. A.6 and with τ = 0.08 are shown in Fig. A.7.
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Figure A.1: Same as Fig. 4.1 but with r = 0.001 and τ = 0.08.
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Figure A.2: Same as Fig. 4.6 but with r = 0.001.
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Figure A.3: Same as Fig. 4.7 but with r = 0.001.
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Figure A.4: Same as Fig. 4.7 but with τ = 0.08.
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Figure A.5: Same as Fig. 4.7 but with r = 0.001 and τ = 0.08.
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Figure A.6: Same as Fig. 4.9 but with r = 0.001.



A.2. The double reionization model 63

101 102

10 5

10 4

10 3

10 2

10 1

100

(
+

1)
C

/(2
)[

K
2 ]

Observed (fiducial)
Best-fit

EE

BB (r = 0.01)

BB (r = 0.001)

Figure A.7: Same as Fig. 4.9 but with τ = 0.08.



Appendix B

Large-scale power spectra analysis
results

We include figures not shown in the main text here.

B.1 The exponential model

For the results only using large-scale power spectra (ℓ < 10), we show the posterior distributions
for τ = 0.08, r = 0.01, τ = 0.054, r = 0.001, τ = 0.08, r = 0.001 in Fig. B.2, Fig. B.1, and
Fig. B.3, respectively. EE and BB power spectra for r = 0.001 are shown in Fig. B.4, and
τ = 0.08 are shown in Fig. B.5.

B.2 The double reionization model

For the results only cutting the small-scale BB power spectrum but keeping the full EE power
spectrum, we show the posterior distributions for τ = 0.08, r = 0.01, τ = 0.054, r = 0.001,
τ = 0.08, r = 0.001 in Fig. B.7, Fig. B.6, and Fig. B.8, respectively. EE and BB power spectra
for r = 0.001 are shown in Fig. B.9, and for τ = 0.08 are shown in Fig. B.10.

For the results only using large-scale power spectra (ℓ < 10), we show the posterior distributions
for τ = 0.08, r = 0.01, τ = 0.054, r = 0.001, τ = 0.08, r = 0.001 in Fig. B.12, Fig. B.11, and
Fig. B.13, respectively. EE and BB power spectra for r = 0.001 are shown in Fig. B.14, and
for τ = 0.08 are shown in Fig. B.15.
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Figure B.1: Same as Fig. 5.1 but with r = 0.001.
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Figure B.2: Same as Fig. 5.1 but with τ = 0.08.
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Figure B.3: Same as Fig. 5.1 but with r = 0.001 and τ = 0.08.
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Figure B.4: Same as Fig. 5.2 but with r = 0.001.
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Figure B.5: Same as Fig. 4.5 but with τ = 0.08 and only using very large scales (ℓ < 10).
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Figure B.6: Same as Fig. 5.3 but with r = 0.001.
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Figure B.7: Same as Fig. 5.3 but with τ = 0.08.
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Figure B.8: Same as Fig. 5.3 but with r = 0.001 and τ = 0.08.
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Figure B.9: Same as Fig. 5.5 but with r = 0.001.
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Figure B.10: Same as Fig. 5.5 but with τ = 0.08.
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Figure B.11: Same as Fig. 5.4 but with r = 0.001.
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Figure B.12: Same as Fig. 5.4 but with τ = 0.08.



B.2. The double reionization model 71

0.0004 0.0008 0.0012 0.0016
Tensor-to-scalar ratio

Posterior
Gaussian Fit

Posterior
Gaussian Fit

9 10 11 12
Reionization redshift

0.0004

0.0008

0.0012

Te
ns

or
-to

-s
ca

la
r r

at
io

Figure B.13: Same as Fig. 5.4 but with r = 0.001 and τ = 0.08.
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Figure B.14: Same as Fig. 5.6 but with r = 0.001.
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Figure B.15: Same as Fig. 5.6 but with τ = 0.08.



Appendix C

Summary of random xe models

We summarize random xe models we generate for this thesis. There are 20 models for τ = 0.054
and 20 models for τ = 0.08. xe is shown in Fig. C.1 and power spectra are shown in Fig. C.2.
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Figure C.1: The free electron fraction xe for random xe models with τ = 0.054 (left) and
τ = 0.08 (right).
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Figure C.2: EE and BB power spectra with τ = 0.054 (top) and τ = 0.08 (bottom) for random
xe model.
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