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Textbook formula for screening:

U(r) =
Q

4πr
→
Q exp(−mDr)

4πr
,

because the time-time component of
the photon propagator acquires “mass”:

k2→ k2 + Π00(k) = k2 +m2
D ,

where e.g. for relativistic fermions

m2
D = e2

(
T 2/3 + µ2/π2

)
.

In presence of condensate the screened
potential drops as a power of r and
oscillates.
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Strangely until recently effects on
screening from condensate of a charged
Bose field were not studied (in rela-
tivistic theory), though it is a simple
textbook problem.
Consider electrically neutral plasma
with large electric charge density of
fermions compensated by charged bosons.
Bosons condense when their chemical
potential reaches maximum value:

µB = mB .
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Equilibrium distribution of condensed
bosons:

fCB = Cδ(3)(q) +
1

exp [(E −mB)/T ]± 1

annihilates collision integral for an
arbitrary constant C.
feq is always determined by two pa-
rameters, either T and µ, or T and C,
iff µ = mB.
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Collision integral:

Icoll ∼ |Afi|2ΠffΠ(1± fi)− (inverse)

If T-invariance holds, i.e. |Aif | = |A′fi|:

Icoll ∼
[
Πfi(1± ff)− (i↔ f)

]
dτ .

Icoll = 0 for arbitrary T and C
iff µ = m.
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Boltzman statistics:

Πfi = exp

[
−
∑
Ei −

∑
µi

T

]
.

Energy conservation
∑∑∑
Ei =

∑∑∑
Ef ,∑∑∑

µi =
∑∑∑
µf , enforced by equilibrium.

The same is true for quantum statis-
tics. Hence in equilibrium:[

Πfi(1± ff)− (i↔ f)
]
dτ = 0 .
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We know from experiment that CP is
broken and believe that CPT is un-
broken, hence T-invariance is broken,
so |Aif | 6= |A′fi| and:

Icoll[feq] ∼ Πfi(1± ff)
[
|Afi|2− |Aif |2

]
.

This term is surely non-vanishing!
Do equilibrium distributions remain
the same in T-broken theory?
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Breaking of T-invariance is unobserv-
able if only one reaction channel is
open. In this case Tif = T ∗fi with time

reflected momenta.
fCB annihilates collision integral after
summation over all relevant processes,
due to S-matrix unitarity or CPT and
conservation of probability.
“The cyclic balance” condition instead
of the detailed balance condition.
If CPT and unitarity are broken equi-
librium distributions could be strongly
distorted, impact on baryogenesis?!
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Screening properties of medium are
expressed through f which is not nec-
essarily equilibrium one. In calcula-
tions neither imaginary time method
which may be inconvenient in pres-
ence of condensate or out of equilib-
rium, nor Matsubara-Keldysh technique
are used. We started from the quan-
tum equations of motion, solved them
up to e2 order, and averaged the cor-
responding operators not only over vac-
uum but also over “non-empty” medium.
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Operator Maxwell equations:

∂νF
µν(x) = J µB(x) +J µF (x) ,

where bosonic current is

J µB(x) = −i e[(φ†(x)∂µφ(x))−
(∂µφ†(x))φ(x)] + 2e2Aµ(x)|φ(x)|2 ,
plus fermionic current:

J µF (x) = eψ̄γµψ .
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Equation for quantum operator φ:

(∂2 +m2)φ(x) = J φ(x) ,

where

J φ = −i e
[
∂µA

µ(x) + 2Aµ(x)∂µ
]
φ(x)

+e2Aµ(x)Aµ(x)φ(x) ,

can be formally solved as (next page):
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φ(x) = φ0(x) +

∫∫∫
d4yGB(x− y)J φ(y) ,

where φ0 is the free field operator.
In the lowest order in e, i.e. up to e2

terms, take φ = φ0 in electromagnetic
current: J µB(x) and in J φ(y).
Next: insert expressions for e.m. cur-
rents into Maxwell equations for clas-
sical field Aµ and take average of op-
erators φ and ψ over medium.

13



The r.h.s. of the Maxwell equations
in e2 order is linear (but non-local) in
Aµ and bilinear in φ0 and ψ0.
Expand free fields as usually:

φ0(x) =

∫∫∫
dq̃
[
a(q)e−iqx + b†(q)eiqx

]
.

Average over medium as:

〈a†(q)a(q′)〉 = fB(Eq)δ
(3)(q− q′),

〈a(q)a†(q′)〉 = [1 + fB(Ep)]δ
(3)(q− q′) .
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Solving Fourier transformed linear
Maxwell equation for At we find:

Πtt(0, k) =
e2

2π2

∫∫∫ ∞
0

dq q2

EB
[fB(EB, µB)

+f̄B(EB, µ̄B)][1 +
E2
B

kq
ln |

2q + k

2q − k
|] ,

plus similar contribution from fermions
which neutralize the plasma.
This leads to the well known result
for Πtt in order e2.
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The screened Coulomb potential is the
Fourier transform of tt-component of
the photon Green’s function in medium:

U(r) = e2
∫

d3k

(2π)3

eikr

k2 + Πtt(k)
=

e2

2π2r

∫ ∞
0

dkk sin kr

k2 + Πtt
.

Asymptotics of the potential for large
r, created by charged impurities is de-
termined by the singularities of the
integrand in complex k-plane.
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Comment.
Singularities of f(z):

f(z) =

∫∫∫ b

a
dyg(z, y)

in complex z-plane appear at such z
for which singularities of g(z, y), i.e.
yc(z), in complex y-plane coincides with
the bounds of integration, a or b, or
yc(z) pinches the contour of integra-
tion.
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Two types of singularities:

1. Poles of [k2 + Πtt(k)]−1.
E.g. Debye pole. Necessary to check
that the position of the poles are at
small k, such that the infrared asymp-
totics of Πtt is valid.
2. Singularities of Πtt(k), originating
from the pinch of the integration con-
tour in q-plane by the poles of f and
by the branch points of log.
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Without condensate one obtains the
usual k-independent Debye screening:

Πtt(0, k) = m2
D

originating from a pole at imaginary
axis of k.

19



With condensate the corrections to
Πtt at low k are infrared singular:

∆Πtt

e2
=
m2
BT

2k
+

C

(2π)3mB

(
1 +

4m2
B

k2

)
Both terms in the r.h.s. appear only
if µ = mB.
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Instead of exponential the screening
becomes power law and oscillating, de-
pending upon parameters, mj:

Πtt = m2
0 +m3

1/k+m4
2/k

2.

May this infrared singularity have some-
thing to do with confinement?
See: P. Gaete, E. Spalucci, 0902.00905
– confinement in the Higgs phase.
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Contribution from poles in the limit
of largem2r but when power law terms
are subdominant:

U(r)pole =
Q

4πr
exp (−

√
e/2m2r)×

cos (
√
e/2m2r).

Oscillating screening is known for
degenerate fermions, Friedel oscilla-
tions. Observed in experiment.

22



Comment.
Friedel oscillations are usually consid-
ered at T = 0. In this case the in-
tegral over q is in finite interval and
the singularity in k appears when log
branch point coincides with the upper
limit of the integration.
T = 0 limit can be obtained in the
“pinch” method by summing all the
singularities.
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Contribution from the integral along
imaginary axis, which is nonzero be-
cause Πtt contains an odd in k term.
If m2 6= 0, the dominant term is

U(r) = −
12Qm3

1

π2e2r6m8
2

.

If T 6= 0, µ = mB, but the condensate
is not yet formed, the asymptotic de-
crease of the potential becomes:

U(r) = −
Q

π2e2r4m3
1

= −
2Q

π2e2r4m2
BT

.
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Contribution from logarithmic cuts (anal-
ogous to Friedel oscillations for fermions).

If the first “pinch” (between the poles
of f(q) and logarithmic branch point)
dominates:

U1(r) = −
32πQ

e2mBr
2

e−z

ln2(2
√

2z)
sin z ,

where z = 2r
√

2πTmB.
NB: U1(r) is inversely proportional to
e2 and formally vanishes at T → 0,
but remains finite if

√
TmBr 6= 0 .
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All pinches are comparable:

U(r) ≈ −
3Q

2e2T 2m3
Br

6 ln3(
√

8mBTr)
.

U ∼ T−2 valid if r � 1/
√

16πTmB,
i.e. if T = 0.1K and mB = 1GeV
the distance should be bounded from
above as r� 3 · 10−8 cm.
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Our next paper on magnetic screen-
ing was submitted to PLA and the
referee was better educated and in-
dicated some relevant references:
S.R. Hore, N.E. Frankel, Phys. Rev.
B12 (1975) 2619;
S.R. Hore, N.E. Frankel, Phys. Rev.
B14 (1976) 1952,
where similar results for electric screen-
ing in nonrelativistic case and by dif-
ferent (much more complicated) tech-
nique were obtained.
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Condensation of vector bosons and mag-
netic screening.
W± would condense in the early uni-
verse if lepton asymmetry was suffi-
ciently high. It leads to large electric
asymmetry of W , such that
µW = mW . Plasma neutrality was
maintained by quarks and leptons.
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Vector bosons have additional degrees
of freedom: their spin states, and their
condensation demonstrates richer pos-
sibilities.
Depending on the sign of the pairwise
spin-spin coupling, W ’s would con-
dense either in S = 0 (scalar) state
or in S = 2 (ferromagnetic) state.
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Magnetic spin-spin interaction through
one photon exchange (similar to Breit
equation):

U
spin
em (r) =

e2ρ2

4πm2
W

[
(S1 · S2)

r3
−

3
(S1 · r)(S2 · r)

r5
−

8π

3
(S1 · S2)δ(3)(r)

]
.

Here ρ is the ratio of magnetic mo-
ment of W to the standard one.
For S-wave the energy is shifted by
the last term only.
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Local quartic self-coupling of W :

U
(spin)
4W =

e2

8m2
W sin2 θW

(S1S2)δ(3)(r).

The net result Uem+U4W is negative
in the standard model, so S = 2 state
is energetically favorable and sponta-
neous magnetization in the early uni-
verse may be possible.
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Suppression due to screening.
Usually(!) the ij component remains
massless: Πij ∼ e2/q2.
In Abelian QED it is true in pertur-
bation theory, while in non-Abelian
theories the screening may occur in
higher orders of perturbation theory
due to infrared singularities. The screen-
ing would diminish the long-range fer-
romagnetic spin-spin coupling while
the local W 4 coupling is not screened.
But all changes in superconductors.
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If the propagator is modified, and the
wave function ofW -bosons is constant
in space, the spin-spin energy shift is:

δE ∼
∫∫∫
d3qδ(q)

(2π)3

q2(S1S2)− (qS1)(qS2)

q2 + Πss(q)

δE = 0, if Πss 6= 0 at q = 0.
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However, the space integration should
be done with an upper limit, l, which
by an order of magnitude is equal to
the average distance betweenW bosons,
so instead of δ(3)(q), we obtain:∫∫∫ l

0
d3reiqr =

4π

q3
[sin (ql)− ql cos (ql)] .

and the energy shift is non-zero:

δE = −
(S1S2)e2

l3m2
W

F (l) ,

F (l) =

∫∫∫ ∞
0

dx
[
x sinx+ l2Πss cosx

]
x2 + l2Πss(x/l)

.
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If l2Πss is nonnegligible the e.m. part
of the spin-spin interaction would be
suppressed and the ferromagnet may
turn into an antiferromagnet. This
might happen at T above the EW phase
transition when the Higgs condensate
is destroyed and mW,Z appear as a re-
sult of temperature and density cor-
rections and are relatively small.
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The quantitative statement depends
upon the modification of the space-
space part of the photon propagator
in presence of the Bose condensate of
charged W .
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The screening of magnetic fields is de-
termined by Πij, which, in the ho-
mogeneous and isotropic case, can be
written as:

Πij = a(k)

(
δij −

kikj

k2

)
+ b(k)

kikj

k2
.

Multiplying Πij by δij and by kikj we
obtain:

b = 0 ,

a =

∫∫∫
e2d3q

16π3E

(
f + f̄

) [
1 +

k2(4q2 − k2)

4(kq)2 − k4

]
.

37



If only the condensate term (delta-
function) is retained in distribution
function, we obtain:

a(C) =
e2C

8π3mB
.

Since a 6= 0 at k = 0 magnetic fields at
large distances from the source would
exponentially decrease.
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Magnetic field could be screened only
by electric currents but they demand
energy supply to compensate for the
Ohmic loss and to maintain them.
NB: BEC is superconducting, high T
superconductivity in contrast to BCS.
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If µ < mB, so the condensate is not
formed, Πij(k) vanishes in the limit

k2→ 0, as expected:

a(k) ≈
e2k2

24π2

∫∫∫
dq

E

(
f + f̄

)
.
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However, if µ = m the integral more
infrared singular and

a(k) =
e2

32π3

∫
d3q

E

(
f + f̄

)
[
2 +

2k2(4q2 − k2)

4(kq)2 − k4

]
.
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It leads to:

a(s)(k) =
e2T

16
k .

If mC > e2T/32, the screened poten-
tial is exponentially cut with superim-
posed oscillations. For e2T � 32mC,
the Green function takes the form:

G(r) ∼ exp (− emCr) cos (e2rT/32) .

Oscillating behavior!!!
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In this case the spatial damping scale
is much shorter than the oscillation
scale. However, if eT ∼ mC the
scales are comparable.
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The screening is effective if the screen-
ing length λ ≡ 1/emC is larger than

the inter-particle distance d ≡ C−1/3.
Thus the screening is not effective if
mB/C

1/3 � 10−4. So it is improba-
ble that the ferromagnetic state could
be realized in the broken phase, where
mB, is essentially determined by the
Higgs VEV. The screening may be in-
effective in the unbroken phase, where
mB is determined by radiative correc-
tions and small.
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Problem of large scale magnetic fields:
B ∼ µG at several kpc. In the Milly
Way B ≈ 3µG and ρB ∼ ρcmb.
In the intergalactic space the fields
are probably 2-3 orders of magnitude
weaker, but still non-vanishing.
In the filaments the field can be com-
parable to the galactic ones.
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Possible mechanisms of B generation.
1. At inflation. Breaking of confor-
mal invariance, otherwise photons are
not produced in FRW metric: confor-
mal anomaly orRA2

µ–coupling. Large
scale is OK but galactic dynamo is
necessary by 1010− 1015.
2. At EW phase transition. The mag-
nitude is OK but the scale is tiny.
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3. At neutrino decoupling. The scale
may be about 1 sec (not so bad) but
the strength demands strong dynamo.
Huge fluctuations of leptonic number
are necessary.
4. At recombination. Vorticity per-
turbations are second order. The scale
is reasonable but magnitude is too small.
5. At contemporary epoch with nor-
mal physics. The fields are too weak
or the scale is very small (stellar ejecta).
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Dynamo is necessary but it operates
in galaxies and not in intergalactic space.
Maybe ferromagnetism of W might
create seeds for large scale magnetic
fields. Huge magnitude, as in electro-
weak phase transition and large, hori-
zon scale, much larger than the bub-
ble size.
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