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0.1 : Standard cosmological model
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Old inflation
Chaotic inflation
Hybrid inflation
…
Brane inflation 
(motivated by string theory)

Cosmic 
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From WMAP

0.2 : CMB sky
Cosmic Microwave Background gives a unique window for understanding 
the early universe and high energy physics. 
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From WMAP

0.2 : CMB sky

Large scale Small scale

＝π/Θ

Cosmic Microwave Background gives a unique window for understanding 
the early universe and high energy physics. 



11/5/2010 Daisuke YAMAUCHI 7

almost flat : Ω0,obs～１

 almost scale invariant

almost(?) Gaussian fluctuations

WMAP (l<1500) 

*Komatsu et al. (‘10)+

Large 
scale

Small
scale

 small scale observation

 polarization

 non-Gaussianity
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Plan

Part 1 :  cosmic “standard” strings and superstrings

What are cosmic strings / cosmic superstrings?
 Evolution of cosmic (super-)strings network

Part 2 : CMB from cosmic (super-)strings

Weak lensing due to strings and CMB polarization
( Analytic formula for string TT angular power spectrum ) 
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Part 1 :  cosmic “standard” string and superstrings
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Question:
What are cosmic strings / cosmic superstrings?
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Question:
What are cosmic strings / cosmic superstrings?

 Line-like topological defect. 
Formed in the early universe through 
“spontaneous symmetry breaking”.
 A probe of phase transitions in the 
early universe.
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Question:
What are cosmic strings / cosmic superstrings?

 Line-like topological defect. 
Formed in the early universe through 
“spontaneous symmetry breaking”.
 A probe of phase transitions in the 
early universe.

 Fundamental objects in string theories,
such as F-strings or D-branes.
 Formed in the early universe through
“collisions of D-branes”.
 A new probe of very high energy physics, 
i.e. string cosmology !!!
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1.1 : “Standard” field theoretic cosmic strings

11/5/2010

φ1

φ2

V(φ)
T > Tc

→ The non-trivial phase mapping from the internal space to the 
physical space leads to the formation of a cosmic string. [Kibble (1976)]

①At T>Tc, the fluctuations around Φ=0.

②The expansion and cooling of the universe 
leads that U(1) sym is broken spontaneously.

③At each spacetime location, the phase θ 
must be randomly chosen and uncorrelated 
on the horizon scale. 
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1.1 : “Standard” field theoretic cosmic strings

11/5/2010

φ1

φ2

V(φ)

T < Tc

y

x

COSMIC 
STRINGS

→ The non-trivial phase mapping from the internal space to the 
physical space leads to the formation of a cosmic string. [Kibble (1976)]
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Observational verification of the existence of cosmic strings 
will have a profound implications to unified theory !

The “tension” of the string , “μ”, 
is directly related to the symmetry 
breaking energy scale : 

There is no direct evidence for their existence. However, there are 
good theoretic reasons for believing that these exotic objects exists!
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1.2 : CMB constraints for “standard” cosmic strings

[Dunkley+ (ACT), 2010]

Atacama Cosmology 
Telescope (ACT)

 Unusual gravitational properties gives a characteristic stringy signature on CMB.

Daisuke YAMAUCHI[see also Bevis+ (2008),(2010), Pogosian+ (2009), Battye, Moss (2010),..]

At small scale where the 
primary fluctuations damped, 
the signal due to cosmic 
strings could be observable!

[Hindmarsh(1994), 
Hindmarsh, Ringeval, Suyama (2009), 

DY+(2010b)]
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Witten [Witten(1985)] argued that cosmic strings are fundamental 
quantum strings and they could have been in the early universe and 
stretched to macroscopic scale with the expansion of the universe. 

1.3 : COSMIC SUPERSTRINGS
[review: Polchinski(2005), Davis+Kibble (2005), Copeland+Kibble (2009), 
Sakellardiadou(2009), Majumdar (2008)]
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Witten [Witten(1985)] argued that cosmic strings are fundamental 
quantum strings and they could have been in the early universe and 
stretched to macroscopic scale with the expansion of the universe. 

1.3 : COSMIC SUPERSTRINGS

To make cosmic sized cosmic superstrings realistic objects, 
we need to introduce new idea.

①If stable, one would expect strings to be at a energy scale close 
to Planck scale !

②Since the inflation scale is at most GUT scale, strings formed at 
an very high energy scale would have diluted !

These strings are naturally ruled out 
from the current observations.

[review: Polchinski(2005), Davis+Kibble (2005), Copeland+Kibble (2009), 
Sakellardiadou(2009), Majumdar (2008)]
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 As is familiar from Randall-Sundrum, to make cosmic strings much lighter 
is to make 4-dimensional constants dependence on the extra dimensions.

[Copeland, Myers, Polchinski 2003]

① Warped geometry

Warping gives the significant contributions to the quantities depending 
on the metric such as the stress-energy tensor:



11/5/2010 Daisuke YAMAUCHI 24

 As is familiar from Randall-Sundrum, to make cosmic strings much lighter 
is to make 4-dimensional constants dependence on the extra dimensions.

[Copeland, Myers, Polchinski 2003]

① Warped geometry

Warping gives the significant contributions to the quantities depending 
on the metric such as the stress-energy tensor:

effective tension 
= a probe of the internal space 
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[Sarangi +Tye (2002), Jones+Stoica+Tye(2003), Dvali+Vilenkin(2004)]  

D3 branes

antiD3 branes

② Brane Inflation
provides a consistent scenario incorporating inflation, graceful exit, 
reheating and also possible production of cosmic superstrings.

[Kachru+(2003), Dvali+Tye(1999), Burgess+(2001)]

(i) The inflation is driven by the attractive force between D 
branes and anti D branes.

(ii) The inflation ends when the brane collides and partially 
annihilate. 

(iii) Collision of the brane gives a possible reheating process 
and a copious production of various lower dimensional objects.
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[Sarangi +Tye (2002), Jones+Stoica+Tye(2003), Dvali+Vilenkin(2004)]  

D3 branes

antiD3 branes

• D1-strings
• closed F-string

② Brane Inflation
provides a consistent scenario incorporating inflation, graceful exit, 
reheating and also possible production of cosmic superstrings.

[Kachru+(2003), Dvali+Tye(1999), Burgess+(2001)]

(i) The inflation is driven by the attractive force between D 
branes and anti D branes.

(ii) The inflation ends when the brane collides and partially 
annihilate. 

(iii) Collision of the brane gives a possible reheating process 
and a copious production of various lower dimensional objects.

Collision
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Question:
Can we distinguish COSMIC SUPERSTRINGS 

from CONVENTIONAL STRINGS 
in observations? 

⇒ INTERCOMMUTING PROBABILITY “P”

There are some good theoretical reason for believing realistic cosmic 
superstrings exists, but …
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or

1-PP
• “standard” field theoretic strings (v<vc~0.98)

: P = 1

• cosmic superstrings

: P << 1
[ Polchinski(1988),

Jackson, Jones, Polchinski (2005),  
Hanany, Hashimoto (2005) ]

[numerical: Shellard(1987), Matzner(1988), Moriarty+(1988),  
Achucarro+de Putter(2006), Achucarro+Verbiest(2010)]

[analytic: Eto+ (2007), Hashimoto+Tong (2005), Hanany+Hashimoto(2005)]

F-F 10-3<PFF<1

D-D 10-1<PDD<1

(p,q)-(p’,q’) More complicated
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or

1-PP
• “standard” field theoretic strings (v<vc~0.98)

: P = 1

• cosmic superstrings

: P << 1
[ Polchinski(1988),

Jackson, Jones, Polchinski (2005),  
Hanany, Hashimoto (2005) ]

[numerical: Shellard(1987), Matzner(1988), Moriarty+(1988),  
Achucarro+de Putter(2006), Achucarro+Verbiest(2010)]

[analytic: Eto+ (2007), Hashimoto+Tong (2005), Hanany+Hashimoto(2005)]

F-F 10-3<PFF<1

D-D 10-1<PDD<1

(p,q)-(p’,q’) More complicated

intercomuting probability P
= a probe of the fundamental interactions
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Even  if we have no evidence for the existence of cosmic strings,  
it gives us the constraints of the string properties !

allowed
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Even  if we have no evidence for the existence of cosmic strings,  
it gives us the constraints of the string properties !

allowed
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Even  if we have no evidence for the existence of cosmic strings,  
it gives us the constraints of the string properties !

allowed
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Even  if we have no evidence for the existence of cosmic strings,  
it gives us the constraints of the string properties !

allowed

excluded

allowed

???
??
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Evolution of string network

Takahashi, Naruko, Sendouda, DY, Yoo, Sasaki, 
JCAP 0910, 003 (2009), arXiv:0811.4698

work in progress with Hiramatsu and Nakao
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1.5 : Analytic model ; Velocity-dependent one-scale model

 A string network is assumed to consist of string segment with 

the correlation length ξ , and the root-mean-square velocity vrms :

Correlation 
length : ξ

RMS velocity : 
vrms

[Ringeval+(‘07)+
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1.5 : Analytic model ; Velocity-dependent one-scale model

 A string network is assumed to consist of string segment with 

the correlation length ξ , and the root-mean-square velocity vrms :

Correlation 
length : ξ

RMS velocity : 
vrms

create a loop 
with length cξ collision rate

[Ringeval+(‘07)+

 Energy loss due to loop formation

or
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Loop formation

Curvature acceleration

: Energy conservation

: EOM

 From Nambu-Goto action, we have

[see also Martins, Shellard (1996, 2002), Avgoustidis,Shellard (2006)]

[Takahashi, DY +(2009), DY +(2010a,b)]]
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Loop formation

Curvature acceleration

: Energy conservation

: EOM

 From Nambu-Goto action, we have

0

0

Assuming the SCALING (scale∝1/H) is already realized by the last scattering 

surface, γ and vrms are asymptotically constant in time:

[see also Martins, Shellard (1996, 2002), Avgoustidis,Shellard (2006)]

[Takahashi, DY +(2009), DY +(2010a,b)]]
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Loop formation

Curvature acceleration

: Energy conservation

: EOM

 From Nambu-Goto action, we have

0

0

Assuming the SCALING (scale∝1/H) is already realized by the last scattering 

surface, γ and vrms are asymptotically constant in time:

[see also Martins, Shellard (1996, 2002), Avgoustidis,Shellard (2006)]

[Takahashi, DY +(2009), DY +(2010a,b)]]

: Scaling solution incorporating P
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1.4 : Numerical approach; Abelian-Higgs model 

Conditions:

 Temperature : T=2Tc → 0.1Tc
 Box size : 36/Hi → 1.8/Hf

 512×512×512, 256×256×256

To investigate the detail of the string network, we focus on the simplest 
model of cosmic strings, Abelian-Higgs model:

where

NOTICE: We just started this research. You cannot 
find the results, but you can SEE our simulations! 
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An important parameter :

Note: 
Positions for string 

cores are found using 
phase information.

By Hiramatsu
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By Hiramatsu

An important parameter :

Energy isosurfaceString cores by phase 
information

Oscillation ???

Type-I strings
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An important parameter :

By Hiramatsu

Energy isosurfaceString cores by phase 
information

Type-II strings
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Part 2 : CMB from 
COSMIC STRINGS/COSMIC SUPERSTRINGS
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Weak Lensing due to strings and CMB polarizations

11/5/2010

DY, Takahashi, Sendouda, Yoo, Sasaki, in prep.
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+ =

Temperature 
fluctuations

Foreground matter 
distribution

Lensed temperature 
fluctuations

Daisuke YAMAUCHI

[Hu & Okamoto (2002)]

Foreground matter perturbations distort the CMB map ! 



11/5/2010 50

+

Only E-mode

=

Lensed E-mode

Lensed B-mode !!!

[Hu & Okamoto (2002)]

Foreground matter 
distribution

Daisuke YAMAUCHI

Additional matter perturbation gives significant 
contribution of BB spectrum through the partial 
conversion of EE to BB !
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Lens 
object

2.1 : Gravitational Lensing

geometry matter 
potential

Light 
source

Daisuke YAMAUCHI

[Kaiser(1998), Bartelmann&Schneider(2001),Lewis&Charllinor(2006)]
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2.2 : Geodesic deviations [see also Uzan&Bernardeau(2001), de Laix(1997)]

①Gravitational time delay

②Lensing potential ③New termgeometry

Solving the equation of geodesic deviation with an arbitrary metric 
perturbation, hμν, in an expanding universe, we find the general expression:

Lens 
object



11/5/2010 Daisuke YAMAUCHI 53

The distance traveled by photon is perturbed, then this modulates the spatial 
surface of recombination.  
Since the change of power spectrum is ~0.1%, we can neglect this contribution.
[Hu and Cooray (2000) for scalar perturbation]

① Gravitational time delay :
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③ New term:

where

③-1: This term introduces an unusual contribution. For vector 
and tensor perturbations, this term may become important.
③-2: Assuming “thin-lens approximation”, the contribution 
from this term reduces to boundary term ! 

Hereafter, we assume thin-lens approximation for simplicity.

The distance traveled by photon is perturbed, then this modulates the spatial 
surface of recombination.  
Since the change of power spectrum is ~0.1%, we can neglect this contribution.
[Hu and Cooray (2000) for scalar perturbation]

① Gravitational time delay :
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where

Neglecting the gravitational time delay ① and the asymmetric term ③, 
we have the ordinary amplification matrix:

② Lensing potential

with
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2.3 : Lensing potential due to cosmic (super-)strings

Assumption : Each scattering due to a string takes place locally, namely
the Hubble expansion can be neglected:
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2.3 : Lensing potential due to cosmic (super-)strings

Assumption : Each scattering due to a string takes place locally, namely
the Hubble expansion can be neglected:

By using above linearized Einstein Eq., we can decompose the lensing
potential into multipole moment analytically: 

where

: projected string tension
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2.4 : Segment formalism and lensing power spectrum

Since the observed sky map due to segments appears as a superposition 
of those due to each segment, then we can decompose 
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2.4 : Segment formalism and lensing power spectrum

Single-segment 
correlation

segment-segment 
correlation

Since the observed sky map due to segments appears as a superposition 
of those due to each segment, then we can decompose 
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2.4 : Segment formalism and lensing power spectrum

Single-segment 
correlation

segment-segment 
correlation

0

Since the observed sky map due to segments appears as a superposition 
of those due to each segment, then we can decompose 
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2.4 : Segment formalism and lensing power spectrum

Single-segment 
correlation

segment-segment 
correlation

0

Weight factor depending 
on the matter distribution 

Power spectrum due 
to a scattering

Since the observed sky map due to segments appears as a superposition 
of those due to each segment, then we can decompose 
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Preliminary

2.2-3 : Lensing Potential

Strings leads to broader lensing spectrum than those due to 
the primordial scalar perturbations.
 The contributions from large scale dominates the spectrum.
 As P degreases, the amplitude increases and the spectrum 
becomes broader.
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2.3 : Weak lensing of CMB
Weak lensing of the CMB remaps the primary anisotropy according 
to the deflection angle :
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2.3 : Weak lensing of CMB
Weak lensing of the CMB remaps the primary anisotropy according 
to the deflection angle :

2D Fourier decomposition :
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2.3 : Weak lensing of CMB
Weak lensing of the CMB remaps the primary anisotropy according 
to the deflection angle :

2D Fourier decomposition :

The TT angular power spectrum at lowest order of Clψψ can be written as

Convolution of ClΘΘ and Clψψwith
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By following the same step as for the temperature fluctuations, 

Convolution of ClEE, BB and Clψψ
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By following the same step as for the temperature fluctuations, 

Convolution of ClEE, BB and Clψψ

If no primordial BB spectrum, the partial conversion of EE to BB !   

0

0
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2.2-4 : Lensed spectrum in flat-sky Preliminary
TT
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2.2-4 : Lensed spectrum in flat-sky Preliminary

EE
TT
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2.2-4 : Lensed spectrum in flat-sky Preliminary

EE

TE

TT



11/5/2010 Daisuke YAMAUCHI 72

2.2-4 : Lensed spectrum in flat-sky Preliminary

EE

TE

For P~1, the TT and TE lensed spectrum due to 
strings is similar to the primordial lensing spectrum.
As P degreases, the lensed amplitude increases.
 For P<10-6 the lensed amplitude becomes larger 
than not only the primoridial lensing spectrum but 
also primordial spectrum !

TT
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BB

2.2-5 : Lensed BB spectrum in flat-sky

Preliminary

The signal from the weak lensing due to cosmic superstring with P<<1 
can be detected by PLANCK !!!
→ Lensed BB spectrum gives the independent constraint on Gμ and P ! 

Mulipole moment l
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2.2-6 : Constraints on string tension Gμ

Preliminary

From TT 
[Yamauchi+(2010b)]

As P degreases, the amplitude due to strings increases,  hence the tension of 
strings with smaller P is tightly constrained.
Assuming that the amplitude of BB spectrum due to weak lensing for various l has 
to be smaller than the primordial lensing, we have the constraint on Gμ:



11/5/2010 Daisuke YAMAUCHI 75

We estimated the contributions of the weak lensing due to 
cosmic (super-)strings to cosmic microwave background 
temperature anisotropy and polarizations.

 Lensed BB spectrum gave the independent constraints on 
the string tension Gμ and the intercommuting probability P.
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A cosmic string is a new smoking gun 
for string cosmology !

４ : Summary

 tensions  “μ”  ⇔ internal geometry (warping)

 intercommuting probabilities “P” ⇔ string interactions
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４ : Summary : Future

(p’,q’)

(p,q)

(p+-p’,q+-q’)
(p’,q’)

(p,q) Y-junction

 Y-junctions

 small scale structures (cusps, kinks, …) 

Stringy effect ::

Observations ::

 Gravitational waves from Y-junction, cusps, kinks, …

 Vector modes in weak lensing survey 
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THANK YOU !


