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Estimating EoR parameters

Abdurashidova+2022 (HERA collaboration)



What summary statistics to use?

HERA 2022

Power spectrum Bispectrum
WST 

wavelet scattering transform

Greig+2023Shimabukuro+2017

Image?

Imaging is expected be possible at the late stage of SKA1 or in SKA2

Can we directly deal with 
the image cubes?



Generative models



Image from https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

There are several different generative models

Might not be the SOTA 
in terms of generation 
quality… But NF tells us 
about the probability 
density

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Data space ⇔ Latent space

Flow-based models transfer data into latent space with invertible functions.
data space:  

256×256 dimension latent space 

← distribution of pixel 
values of 21cm map

f: invertible

• When generating a new data, one can sample a random point in the latent space and apply “f-1” 
• Invertible functions can be used to infer the probability density of a given data

f-1(z)

f(x)

Well-known distribution 
(e.g., Gaussian)



What transformation to use?

Transformations are invertible and their determinants can be (easily) computed
Examples:

f(x) = (3 2
0 4) x f −1(x) = (1/3 −1/6

0 1/4 ) x, det (∂f(x)
∂x ) = 3 × 4

f : permutation f −1 : inverse permutation, det (∂f(x)
∂x ) = 1

permute pixel 0 and 3



Hassan+ 2022: application of NF to post-reionization 21cm maps

Generated LSS images

Cosmological parameter inference



Dai+2022: Translation and Rotation Equivariant Normalizing Flow

Generated LSS images Cosmological parameter inference



What transformation to use?

Transformations are invertible and their determinants can be (easily) computed
Examples:

f(x) = (3 2
0 4) x f −1(x) = (1/3 −1/6

0 1/4 ) x, det (∂f(x)
∂x ) = 3 × 4

f : permutation f −1 : inverse permutation, det (∂f(x)
∂x ) = 1

permute pixel 0 and 3

Translation and Rotation Equivariant Normalizing Flow (TRENF; Dai+2022)

: Monotonic nonlinear function 
: non-zero function



Let us use NF for EoR 21cm map!

Transformation  
parameters 
T1, T2, …, TN

neutral fraction

NN

21cm map + noise + smoothing

Training data: 
21cmFAST with different 
parameters of f*. α*, fesc, 
αesc, t*, Mturn, LX, E0, αX

Latent variable



Result: transform to noise



Result: transform to noise



Result: transform to noise



Result: transform to noise



Result: transform to noise



Result: transform to noise



Generation of new images

Transformation  
parameters 
T1, T2, …, TN

neutral fraction

NN

21cm map + noise + smoothing Latent variable



Transformation  
parameters 
T1, T2, …, TN

neutral fraction

NN

21cm map + noise + smoothing Latent variable

Generation of new images



Result: transform from random noise



Result: transform from random noise



Result: transform from random noise



Result: transform from random noise



Result: transform from random noise



Result: transform from random noise

Generated image



Result: generated images

Real (simulation)

Generated

<xH> = 0.1 <xH> = 0.3 <xH> = 0.5 <xH> = 0.7 <xH> = 0.9



Result: transformation into latent space

Randomly sampled simulation data (test data) 

<xH> = 0.1 <xH> = 0.3 <xH> = 0.3 <xH> = 0.5 <xH> = 0.6

<xH> = 0.6 <xH> = 0.7 <xH> = 0.8 <xH> = 0.8 <xH> = 0.8



Result: transformation into latent space

Transformation with correct parameters  

<xH> = 0.1 <xH> = 0.3 <xH> = 0.3 <xH> = 0.5 <xH> = 0.6

<xH> = 0.6 <xH> = 0.7 <xH> = 0.8 <xH> = 0.8 <xH> = 0.8



Result: transformation into latent space

Transformation with incorrect parameters  
(xHI = 0.8 for all cases)

<xH> = 0.1 <xH> = 0.3 <xH> = 0.3 <xH> = 0.5 <xH> = 0.6

<xH> = 0.6 <xH> = 0.7 <xH> = 0.8 <xH> = 0.8 <xH> = 0.8



Computation of the probability density

dxdf

π(z) p(x)

z = f(x)

x = f-1(z)

Latent space Data space

Assumption: latent space 
distribution π(z) is known p(x) = π( f(x)) det (∂f(x)

∂x ) = π( f(x))Πn
l=1 det (∂fl(x)

∂x )
p(x |y) = π( fy(x)) det (

∂fy(x)
∂x )When the model is conditional: p(y |x) ∝ p(x |y)p(y)→



Result: parameter inference

xH = 0.1 xH = 0.3 xH = 0.5 xH = 0.7 xH = 0.9

p(y|x)

x



Is it learning something beyond power spectrum?

Test with three samples with similar power



Inferring both ionization and heating state

21cm signal
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Summary

• Normalizing flow could be a good tool for fully extracting information 
from EoR 21 cm maps 

• Issues 
Noise and smoothing are too simple 
Foregrounds are not included  
Tested only one specific simulation  
Is it better to directly use uv-plane than images? 

Could deep-learning methods extract more information than 
using summary statistics? 
Is NF better than the other CNN-based models? In what aspect? 

Questions, comments, and suggestions are welcome!


