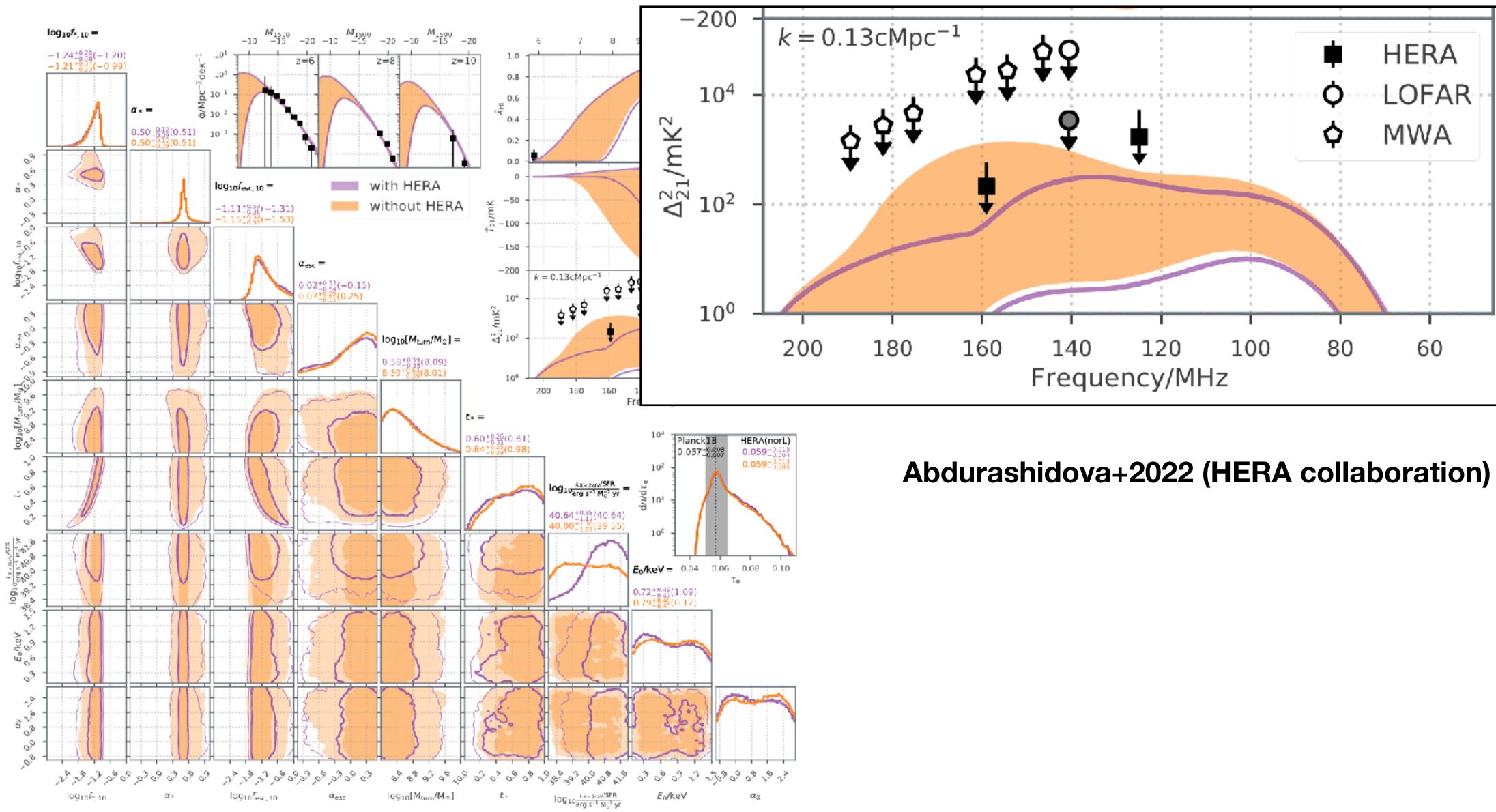
Estimating EoR parameters with deep learning

Kana Moriwaki (The University of Tokyo)

Hongo 21cm workshop 3-4 Oct. 2024

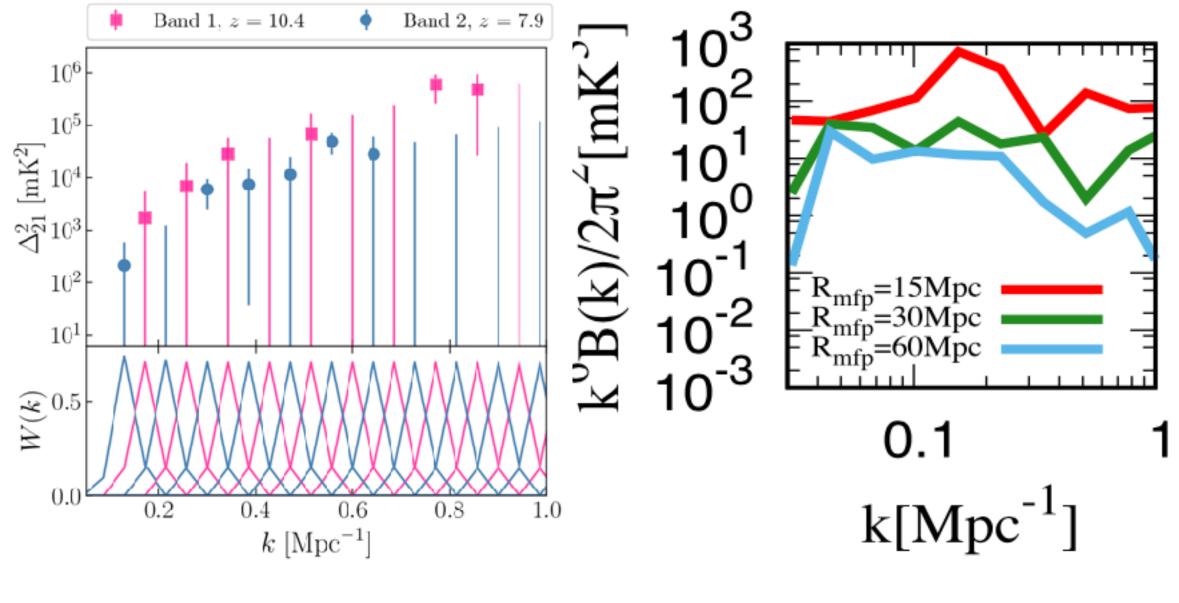
Estimating EoR parameters



What summary statistics to use?

Power spectrum

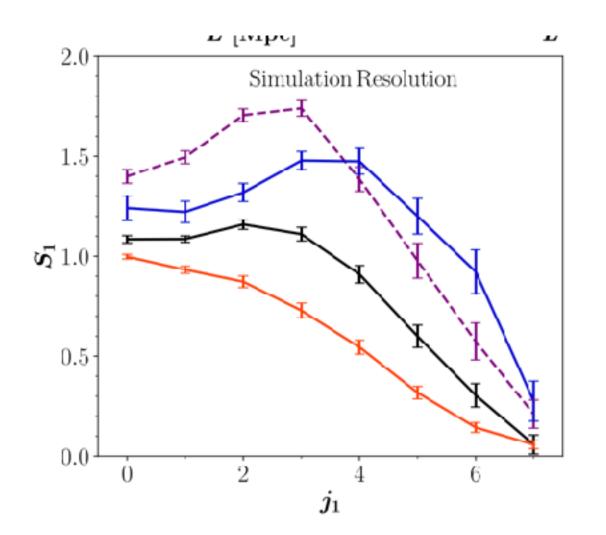
Bispectrum



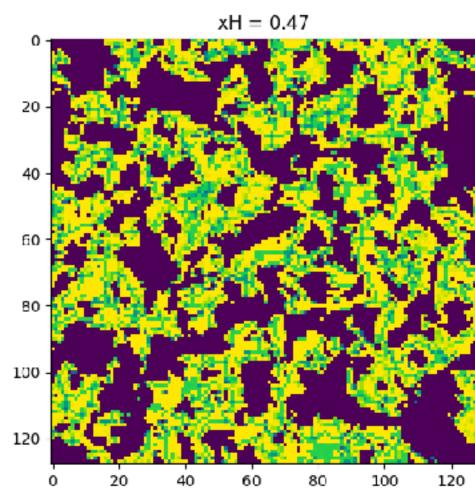
HERA 2022

Shimabukuro+2017

WST wavelet scattering transform



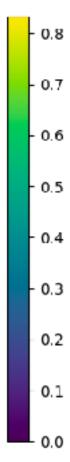
Image?



Greig+2023

Can we directly deal with the image cubes?

Imaging is expected be possible at the late stage of SKA1 or in SKA2



Generative models

Stable Diffusion XL

Create and inspire using the worlds fastest growing open source AI platform.

With Stable Diffusion XL, you can create descriptive images with shorter prompts and generate words within images. The model is a significant advancement in image generation capabilities, offering enhanced image composition and face generation that results in stunning visuals and realistic aesthetics.

Stable Diffusion XL is currently in beta on DreamStudio and other leading imaging applications. Like all of Stability AI's foundation models, Stable Diffusion XL will be released as open source for optimal accessibility in the near future.

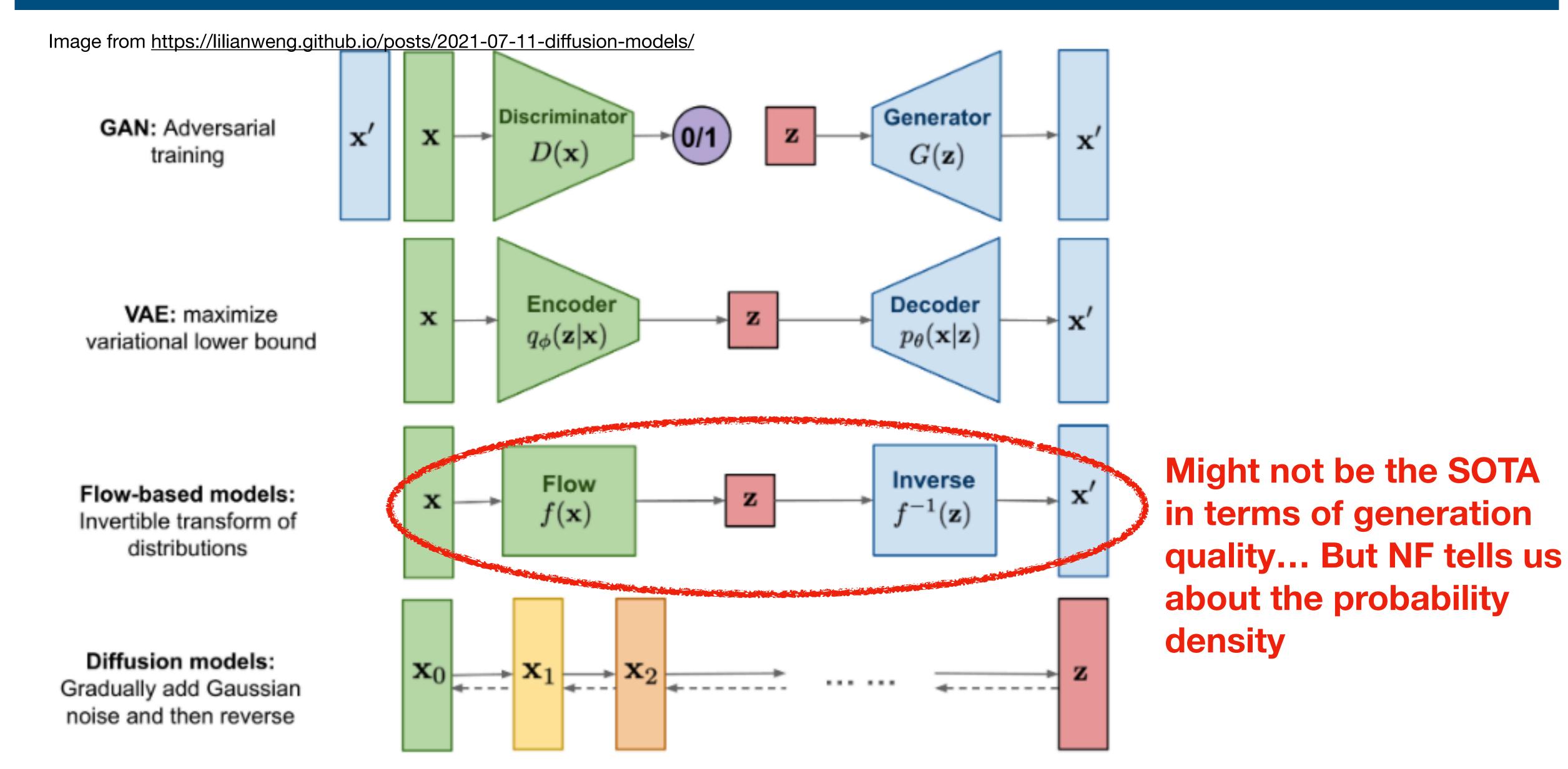
Stability AIについて

モデル

DreamStudio

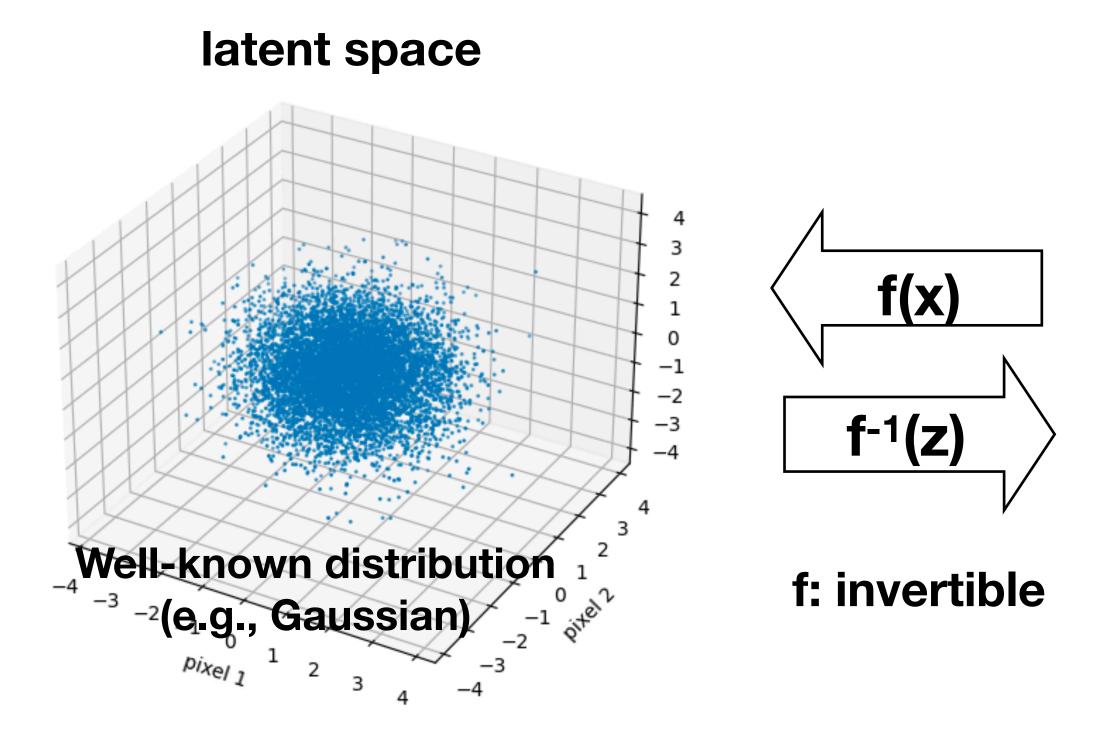
2014		2015	2016	2017	2018
API ニュース	📲 English	ising generat	ive modeling has im	proved significantly	in the last four
<image/>					

There are several different generative models

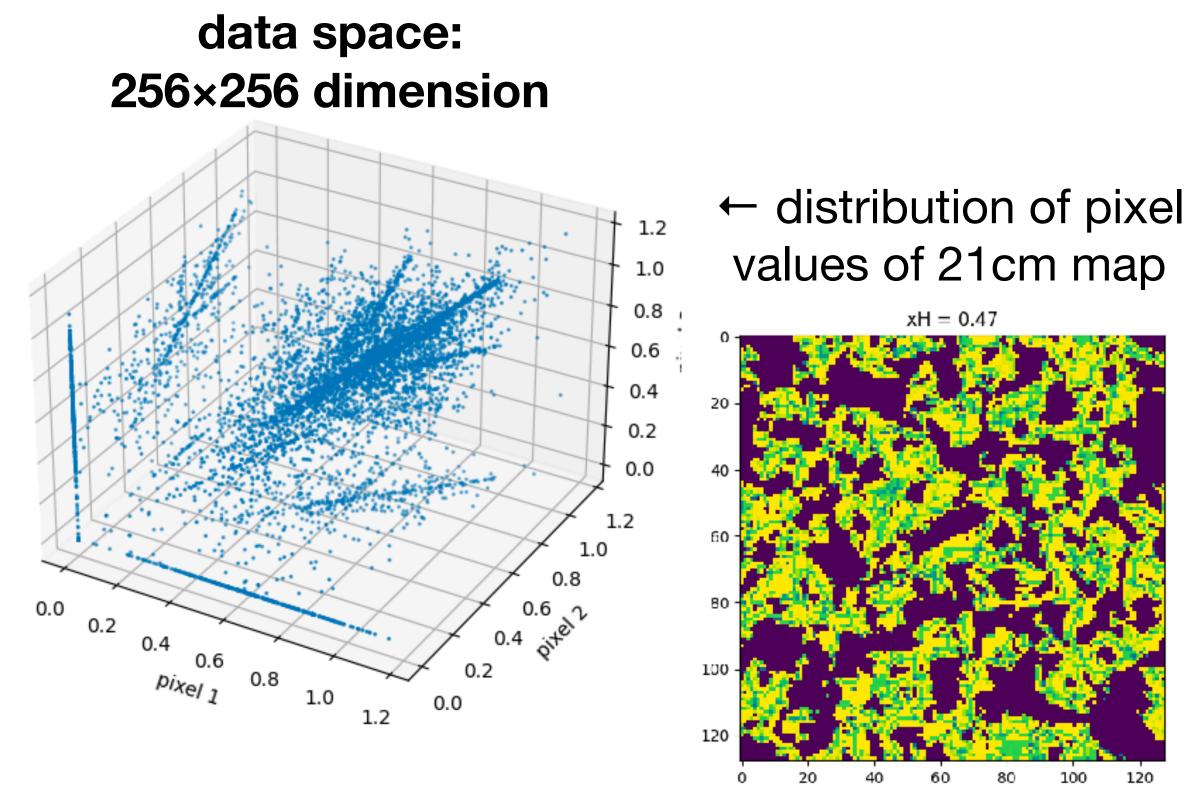


Data space ⇔ Latent space

Flow-based models transfer data into latent space with invertible functions.



- Invertible functions can be used to infer the probability density of a given data



When generating a new data, one can sample a random point in the latent space and apply "f⁻¹"

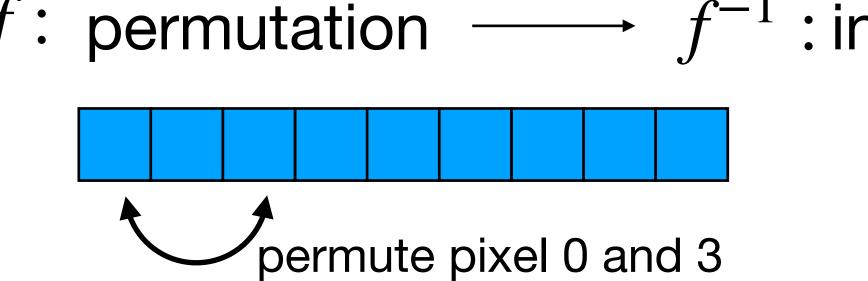
0.3 0.2

Transformations are invertible and their determinants can be (easily) computed

Examples:

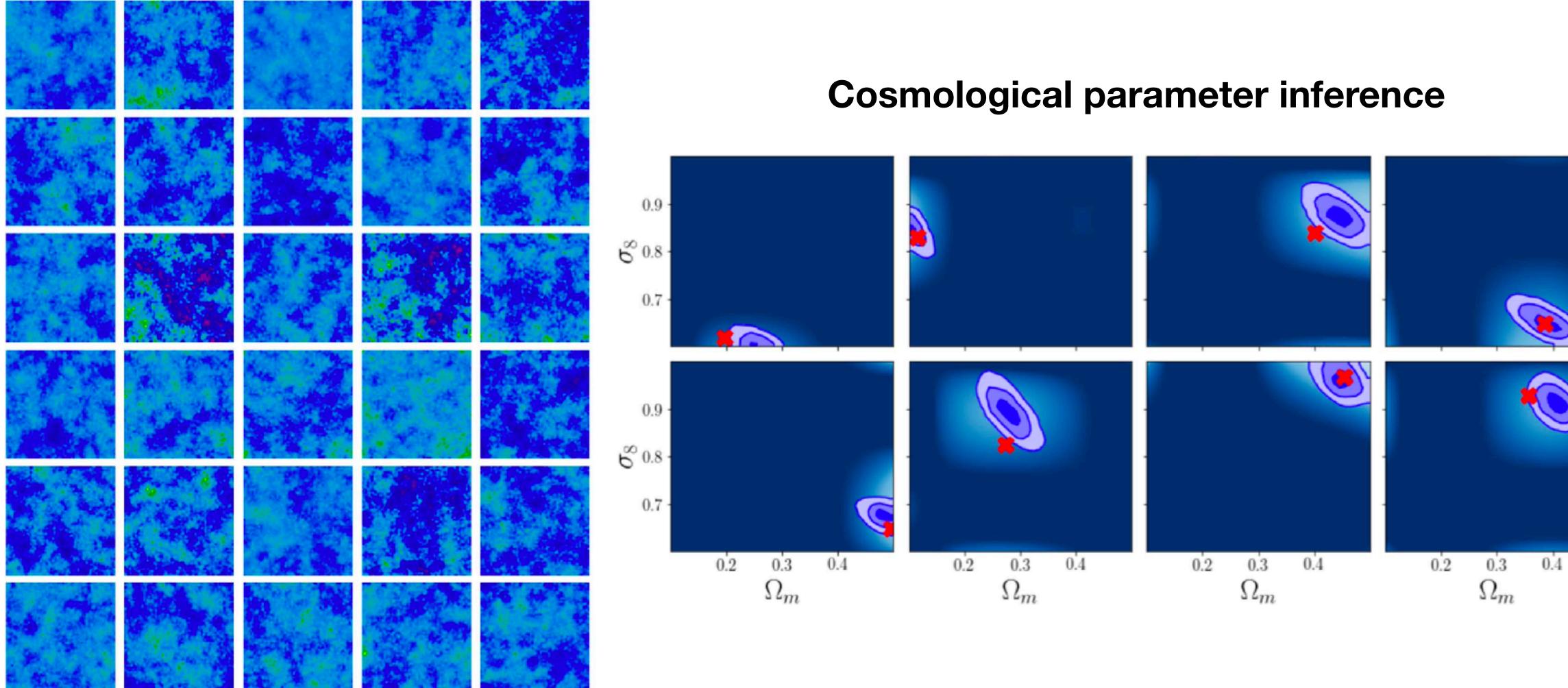
$$f(x) = \begin{pmatrix} 3 & 2 \\ 0 & 4 \end{pmatrix} x \longrightarrow f^{-1}(x) = \begin{pmatrix} 1/3 & -1/6 \\ 0 & 1/4 \end{pmatrix} x, \quad \det\left(\frac{\partial f(x)}{\partial x}\right) = 3 \times 4$$

f: permutation $\longrightarrow f^{-1}$: inverse permutation, $\det\left(\frac{\partial f(x)}{\partial x}\right) = 1$



Hassan+ 2022: application of NF to post-reionization 21cm maps

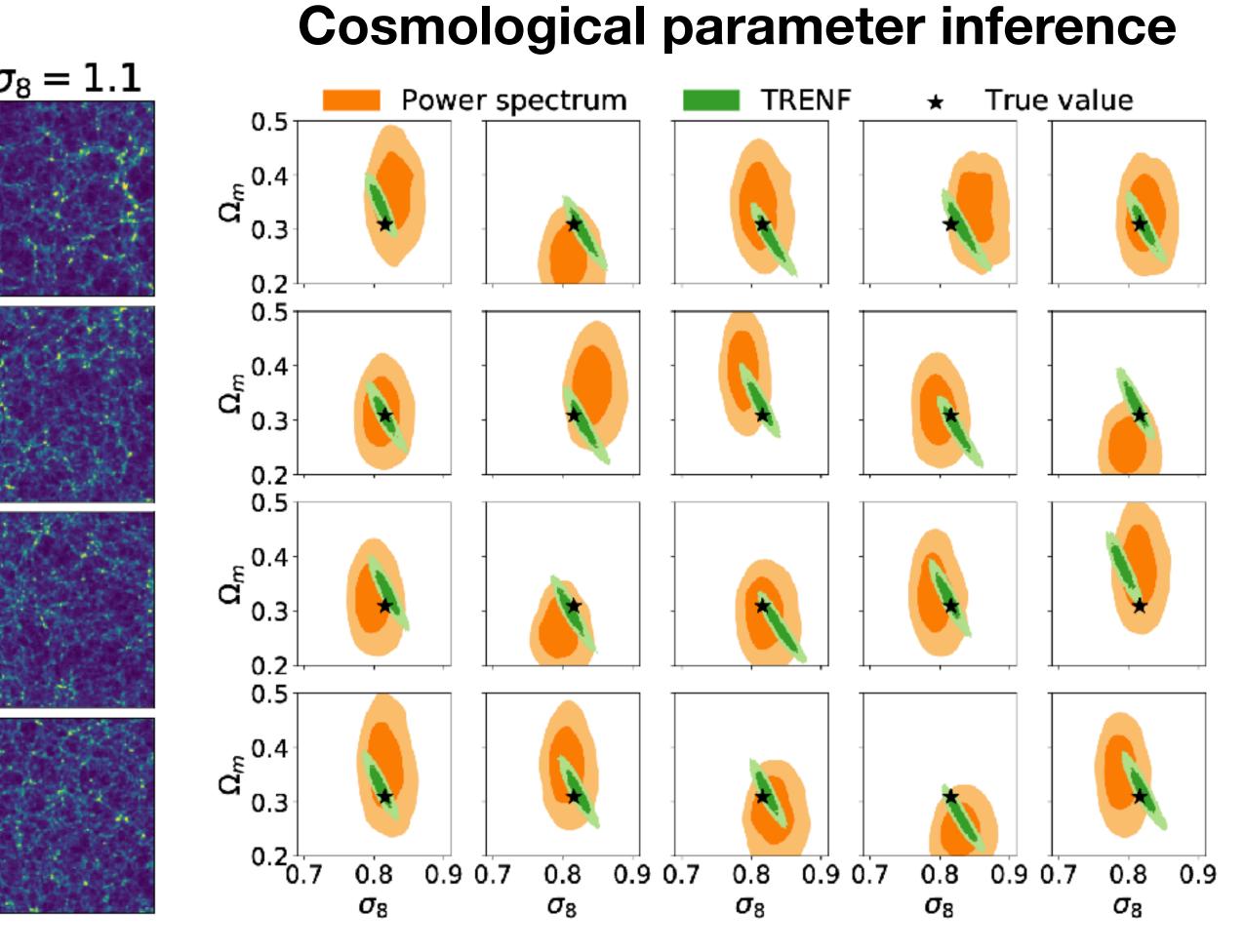
Generated LSS images



Dai+2022: Translation and Rotation Equivariant Normalizing Flow

Generated LSS images

 $\sigma_8 = 0.6$ $\sigma_8 = 0.7$ $\sigma_8 = 0.8$ $\sigma_8 = 0.9$ $\sigma_8 = 1.0$ $\sigma_8 = 1.1$ $\Omega_m = 0.2$ $\Omega_m = 0.3$ = 0.4 \mathbf{D}_m 0.5 II 5



Transformations are invertible and their determinants can be (easily) computed

Examples:

$$f(x) = \begin{pmatrix} 3 & 2 \\ 0 & 4 \end{pmatrix} x \longrightarrow f^{-1}(x) = \begin{pmatrix} 1/3 & -1/6 \\ 0 & 1/4 \end{pmatrix} x, \quad \det\left(\frac{\partial f(x)}{\partial x}\right) = 3 \times 4$$

$$f: \text{ permutation } \longrightarrow f^{-1}: \text{ inverse permutation, } \quad \det\left(\frac{\partial f(x)}{\partial x}\right) = 1$$

$$f(x) = \begin{pmatrix} 3 & 2 \\ 0 & 4 \end{pmatrix} x \longrightarrow f^{-1}(x) = \begin{pmatrix} 1/3 & -1/6 \\ 0 & 1/4 \end{pmatrix} x, \quad \det\left(\frac{\partial f(x)}{\partial x}\right) = 3 \times 4$$

$$f: \text{ permutation } \longrightarrow f^{-1}: \text{ inverse permutation, } \det\left(\frac{\partial f(x)}{\partial x}\right) = 1$$

$$f = \Psi \left(\hat{F}^{-1} \tilde{T}(k) \hat{F} x \right) \qquad \begin{array}{l} \Psi \\ \tilde{T}(k) \\ \tilde{T}(k) \end{array}$$

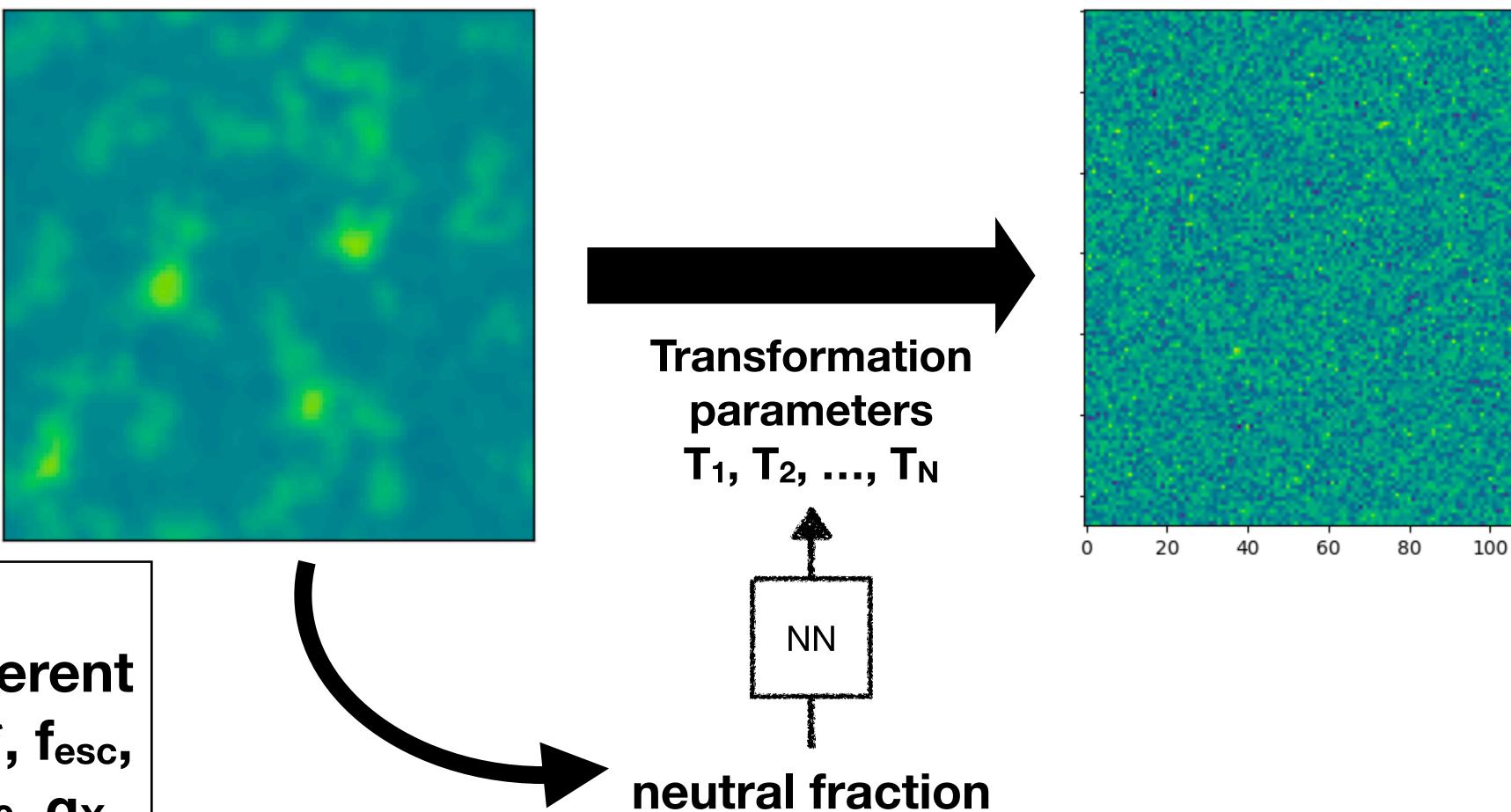
Translation and Rotation Equivariant Normalizing Flow (TRENF; Dai+2022)

Monotonic nonlinear function

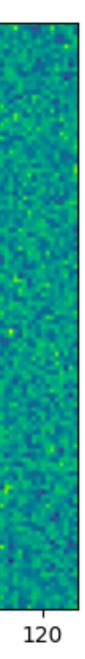
k): non-zero function

Let us use NF for EoR 21cm map!

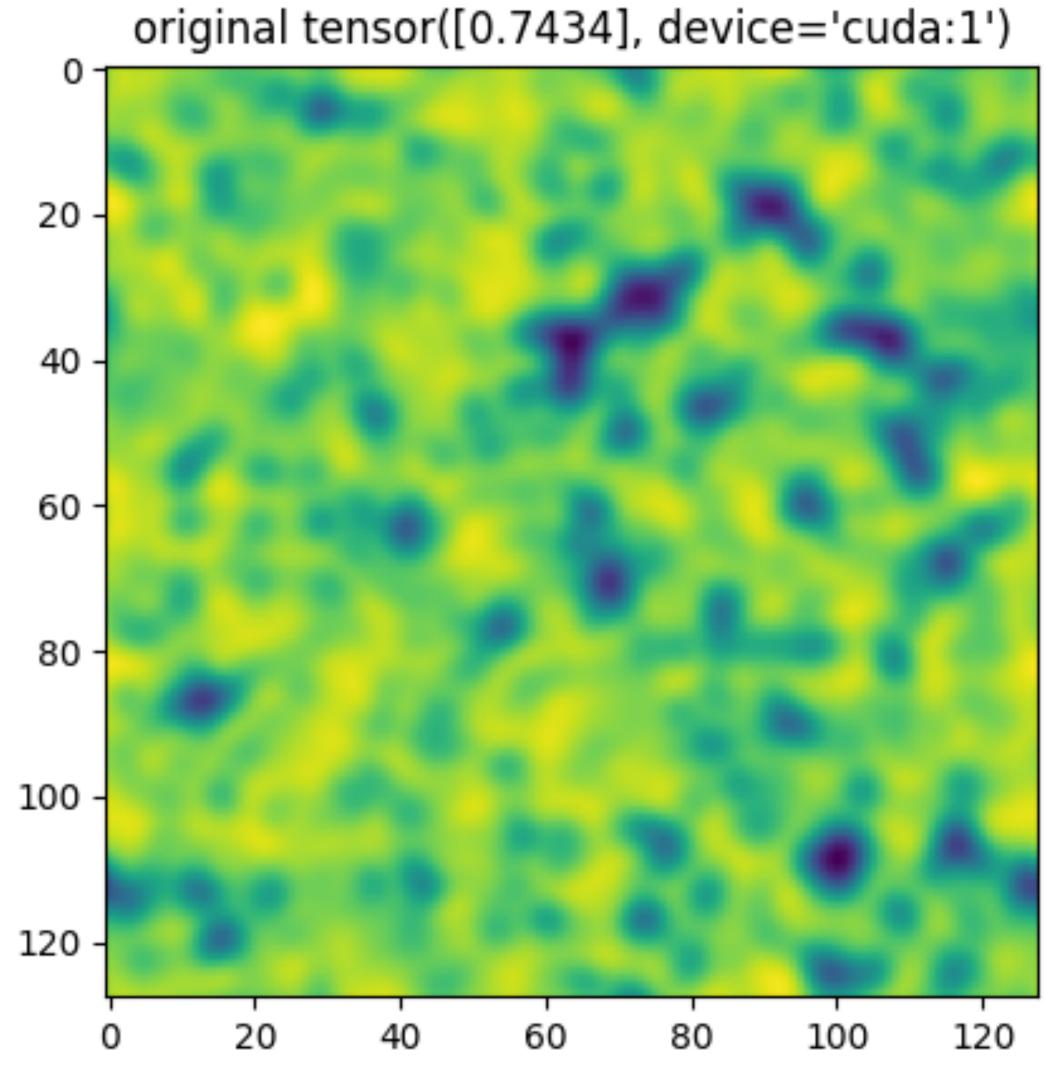
21cm map + noise + smoothing

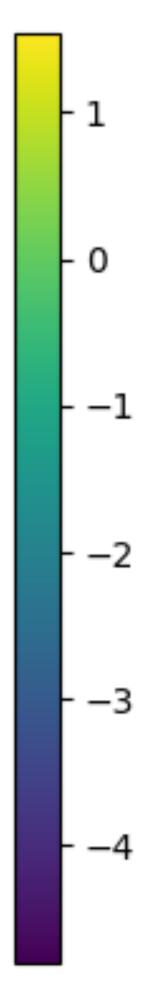


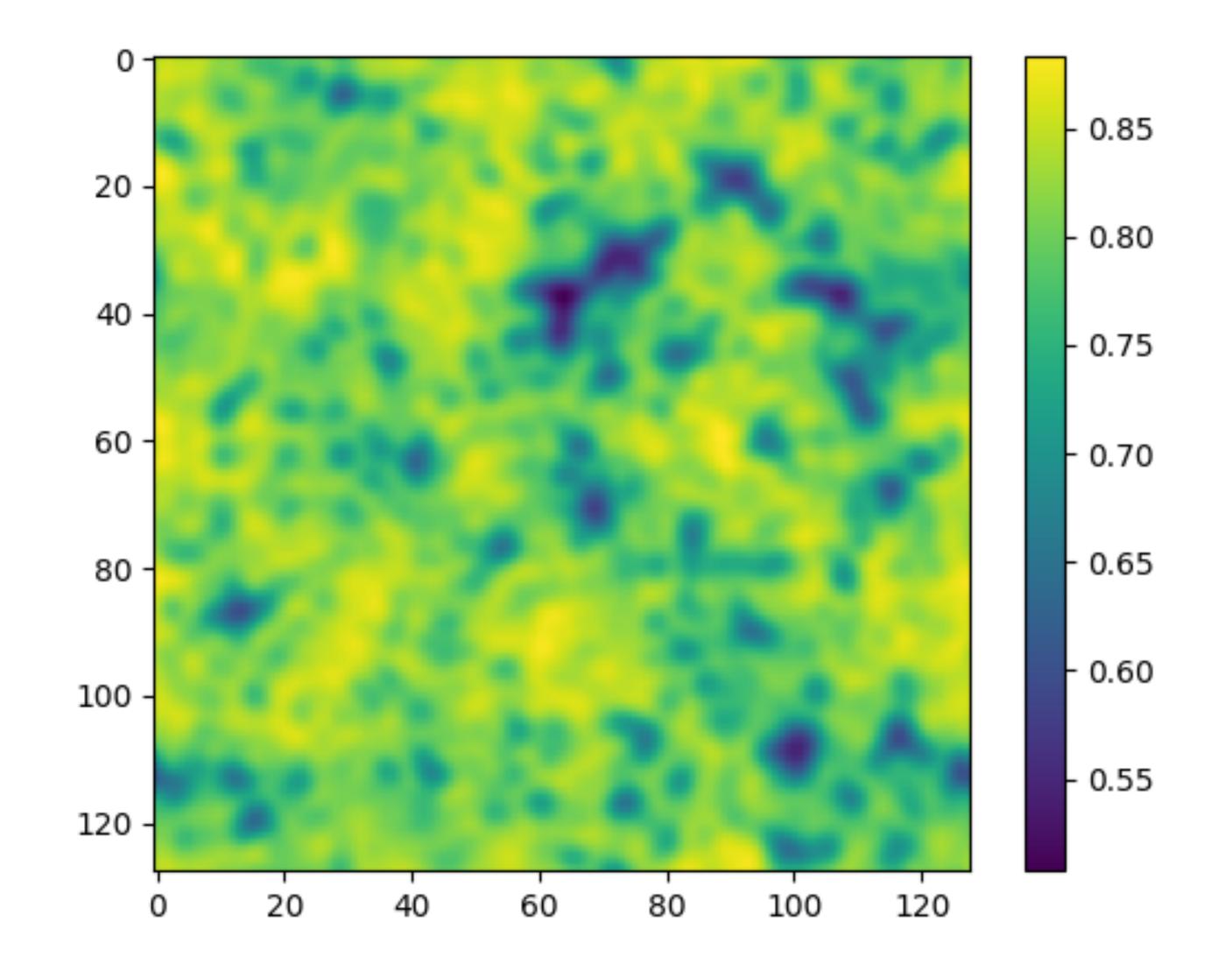
Training data: 21cmFAST with different parameters of f*. α*, f_{esc}, α_{esc}, t*, M_{turn}, L_X, E₀, α_X

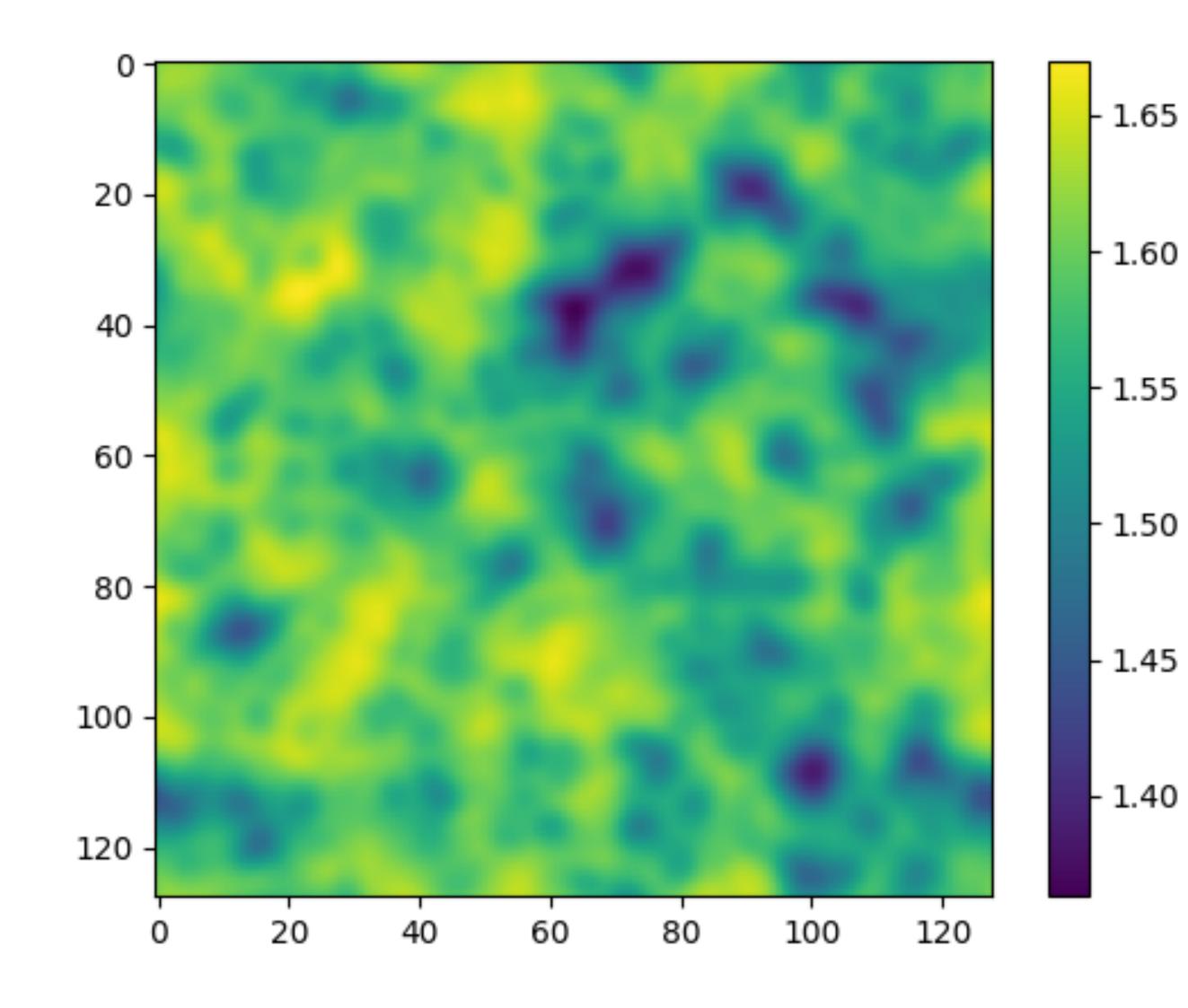


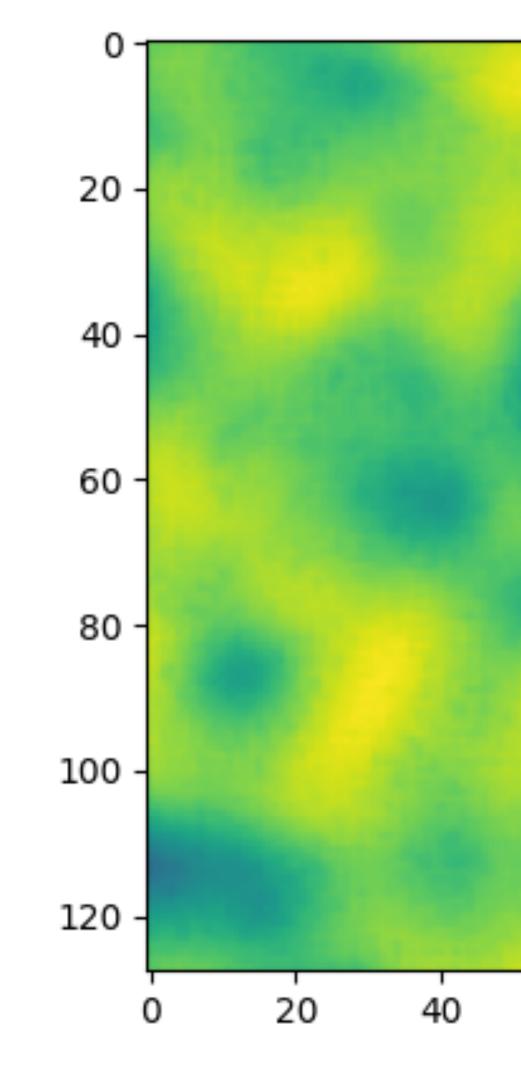
Latent variable

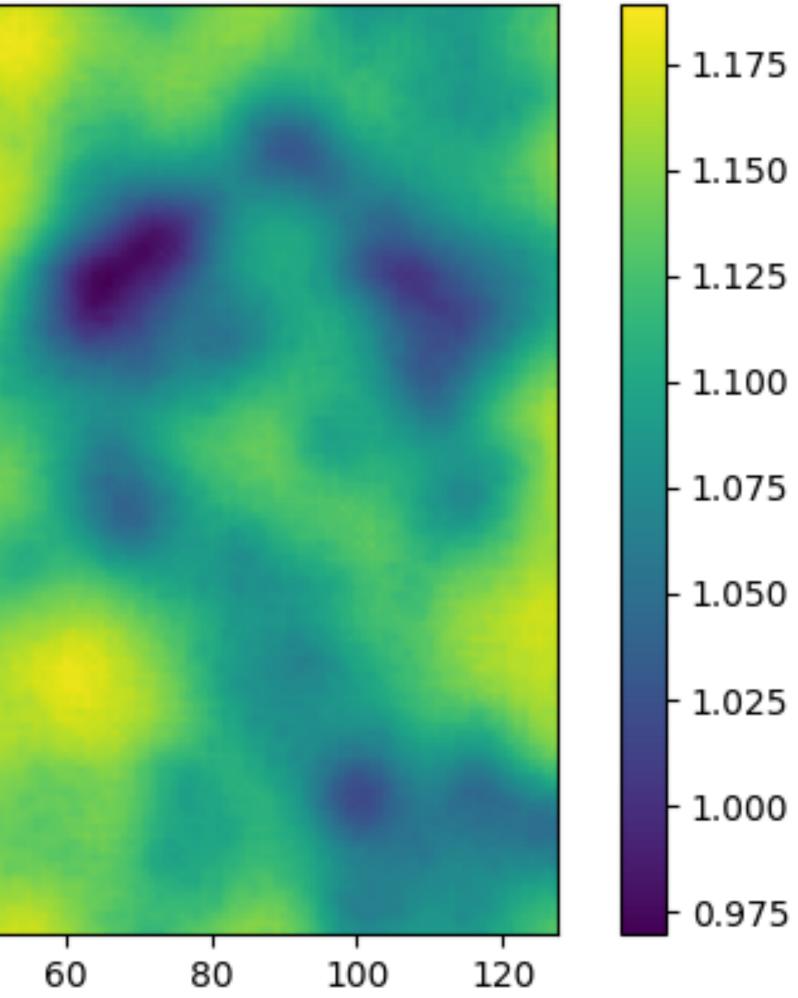


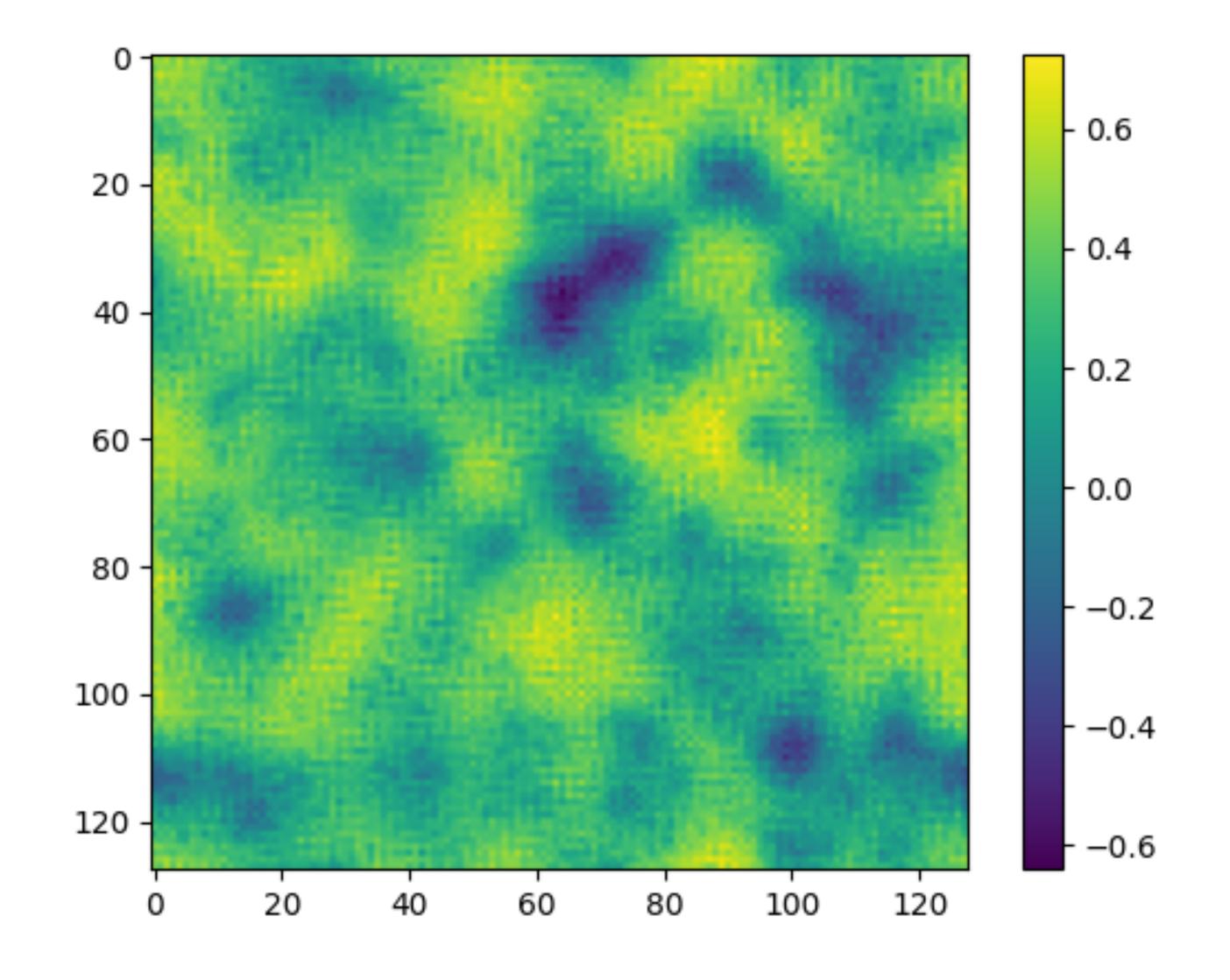


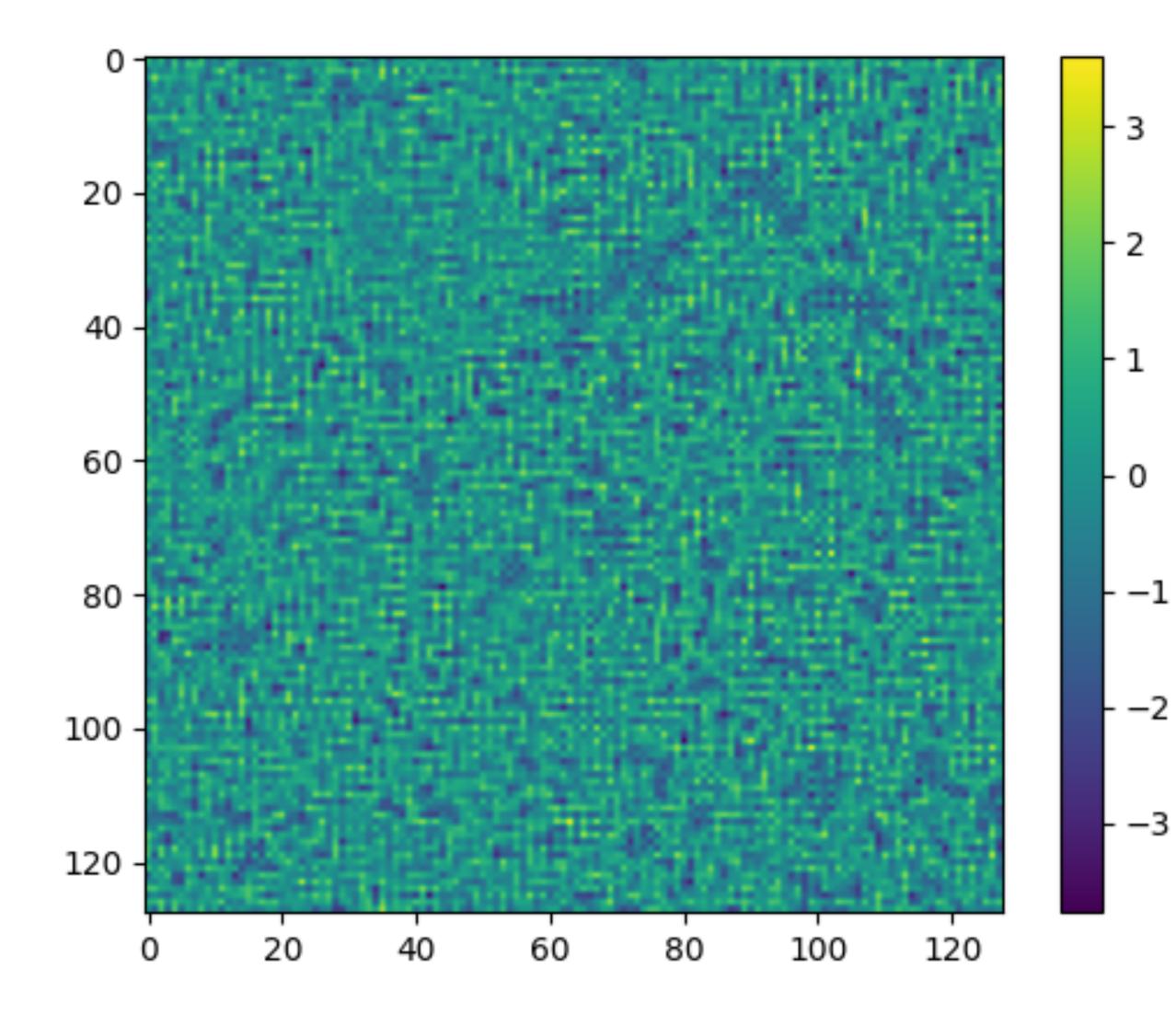












- 3

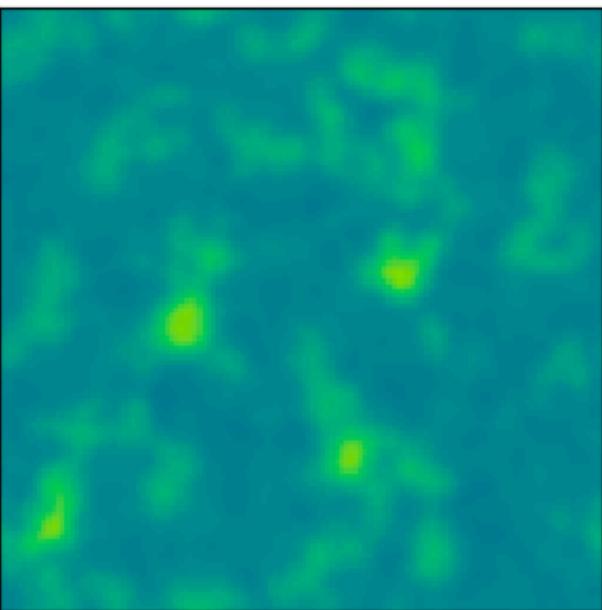
- 2

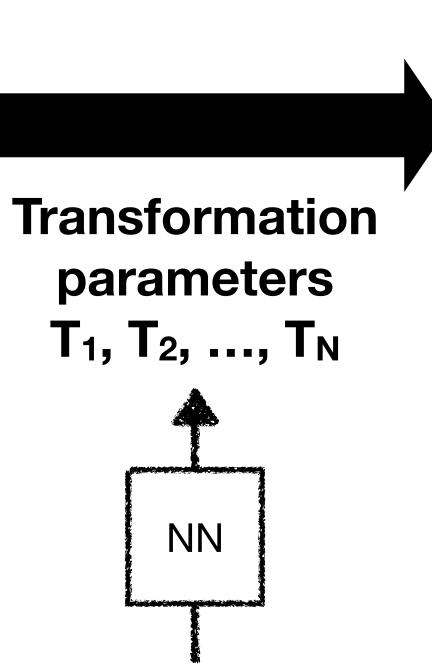
- 1

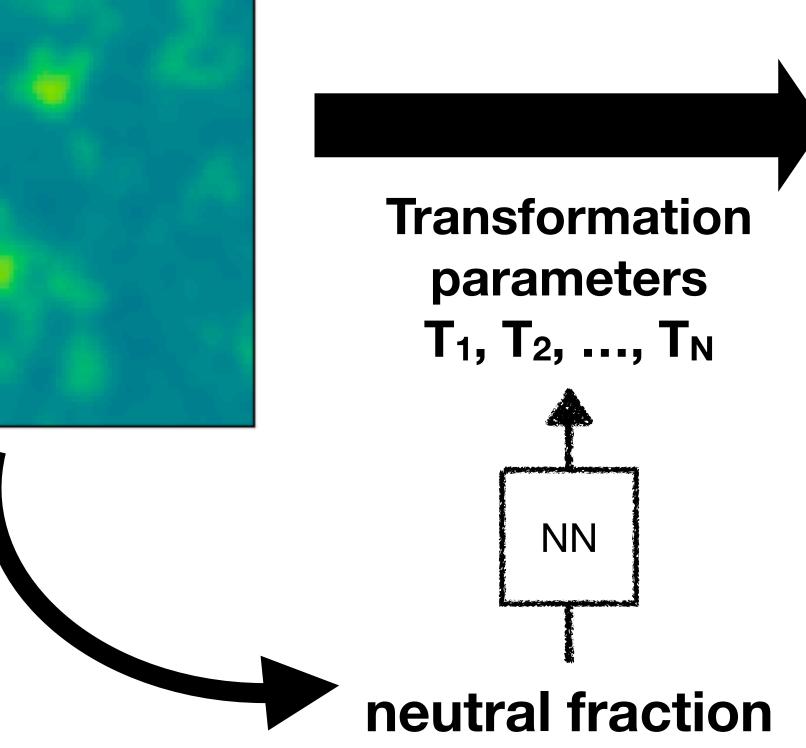
- 0

Generation of new images

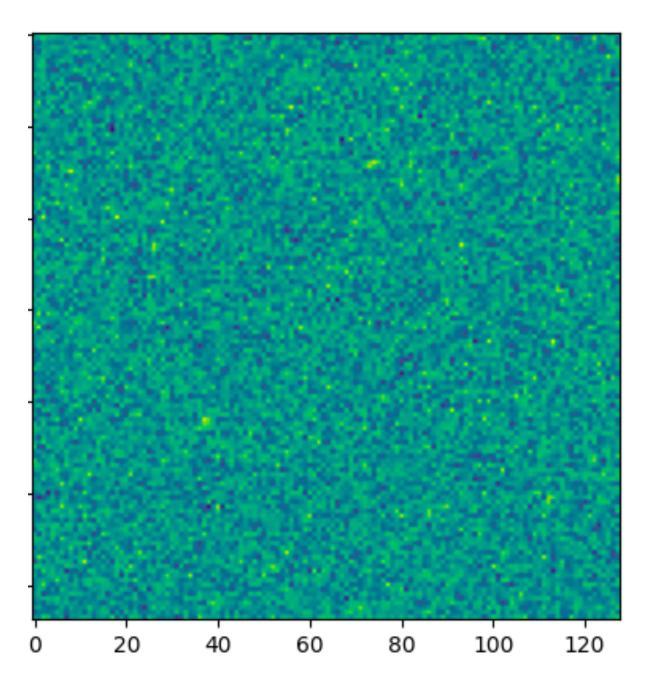
21cm map + noise + smoothing





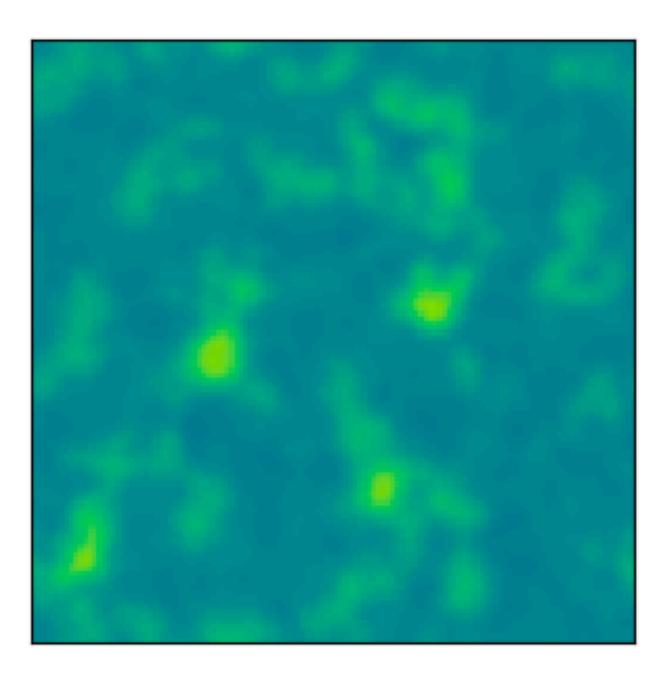


Latent variable

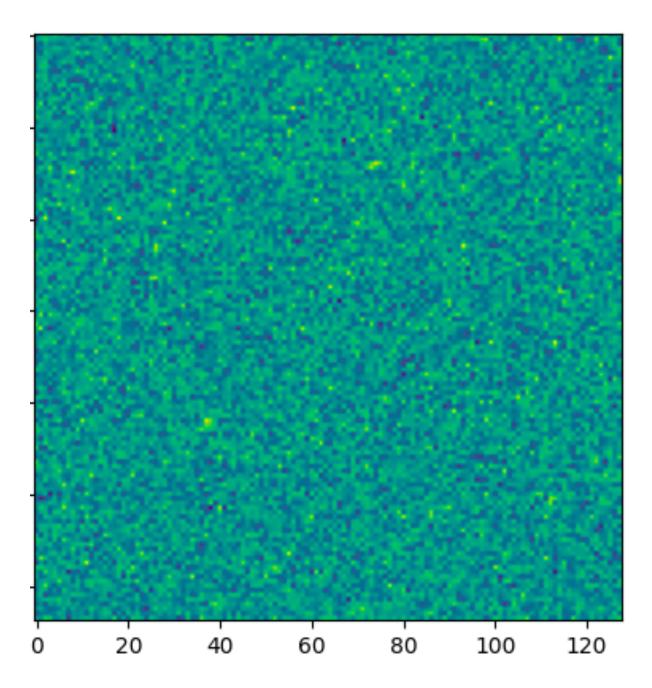


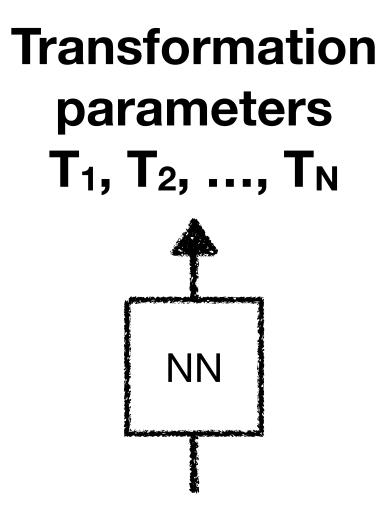
Generation of new images

21cm map + noise + smoothing

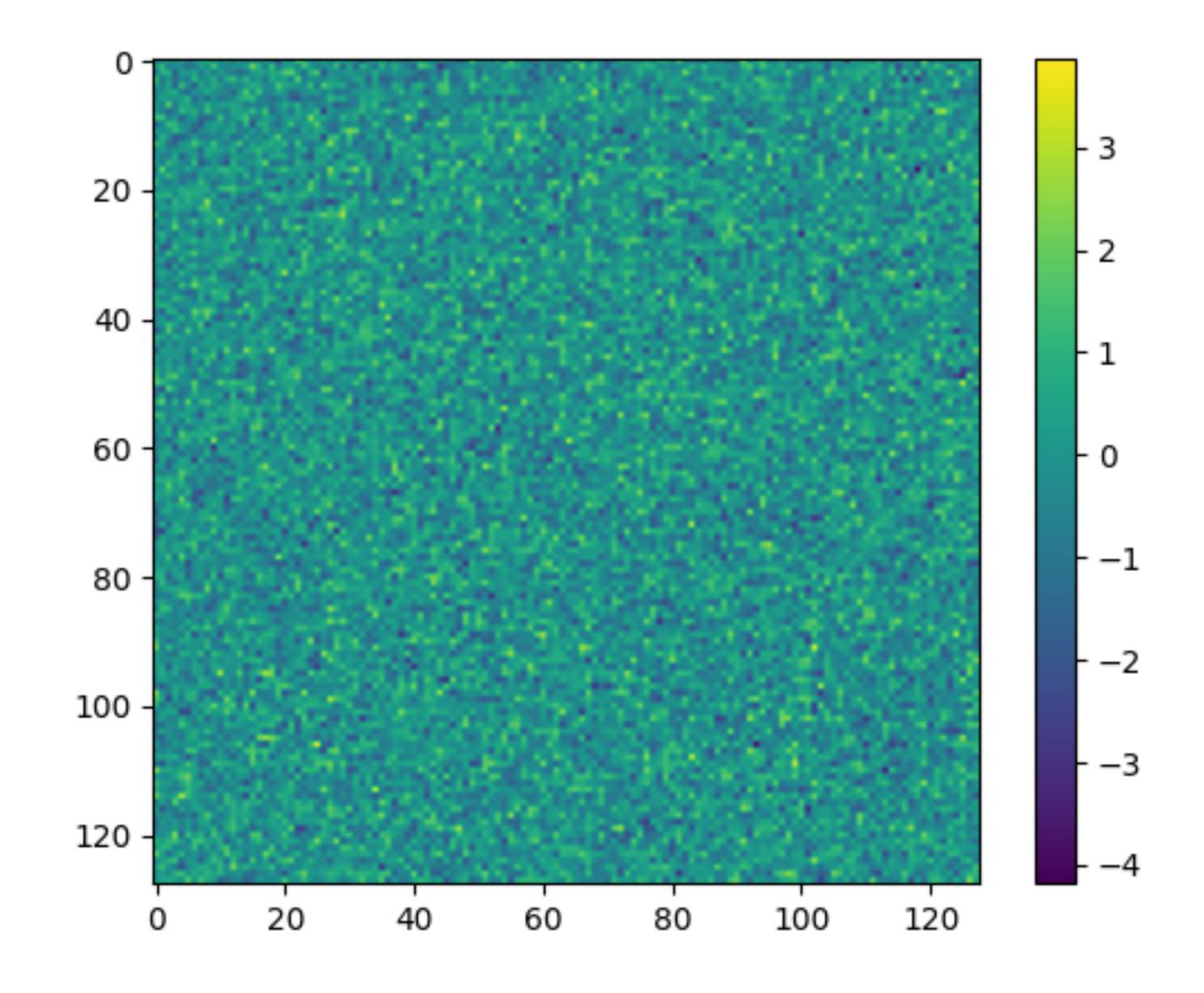


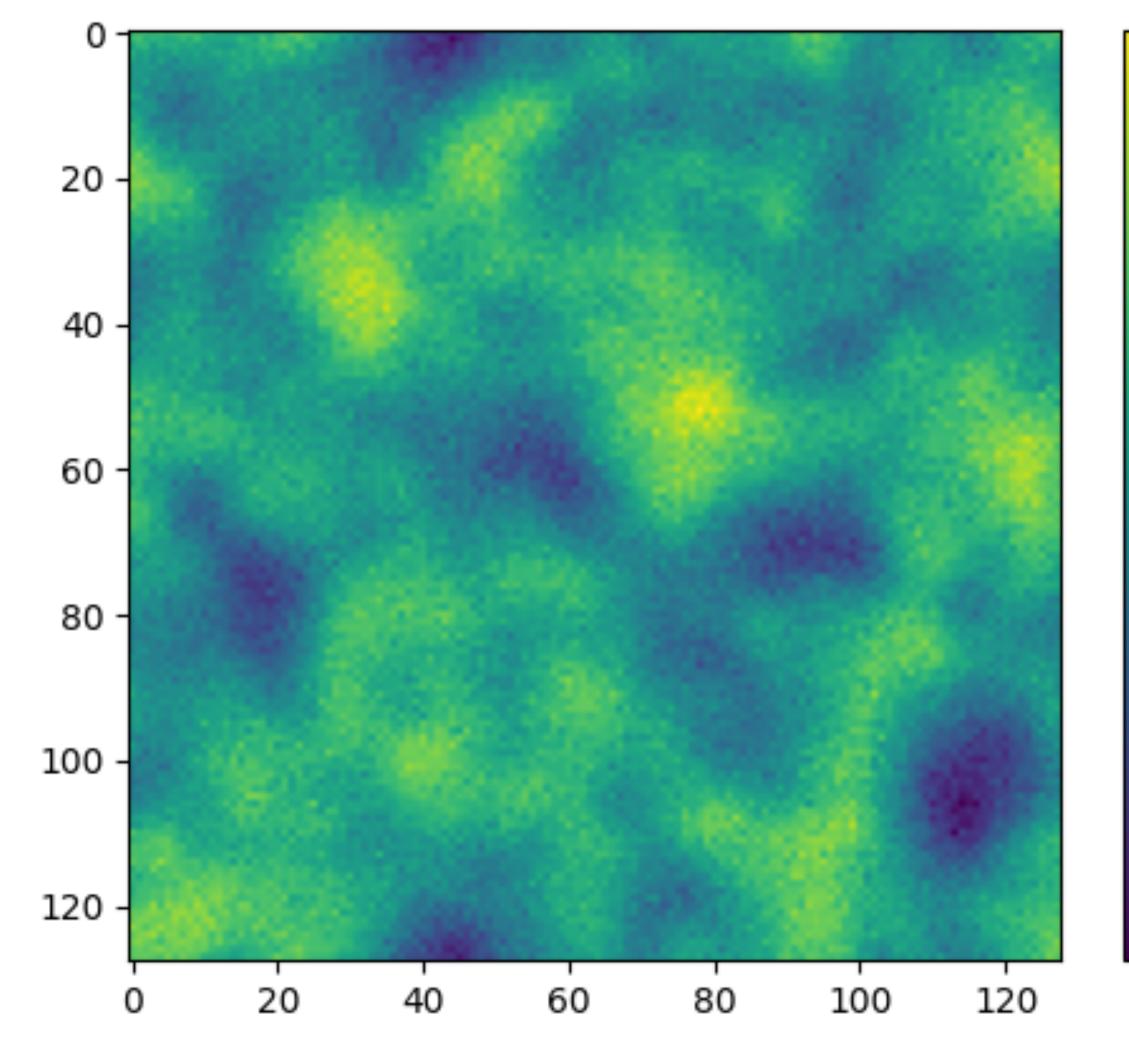
Latent variable

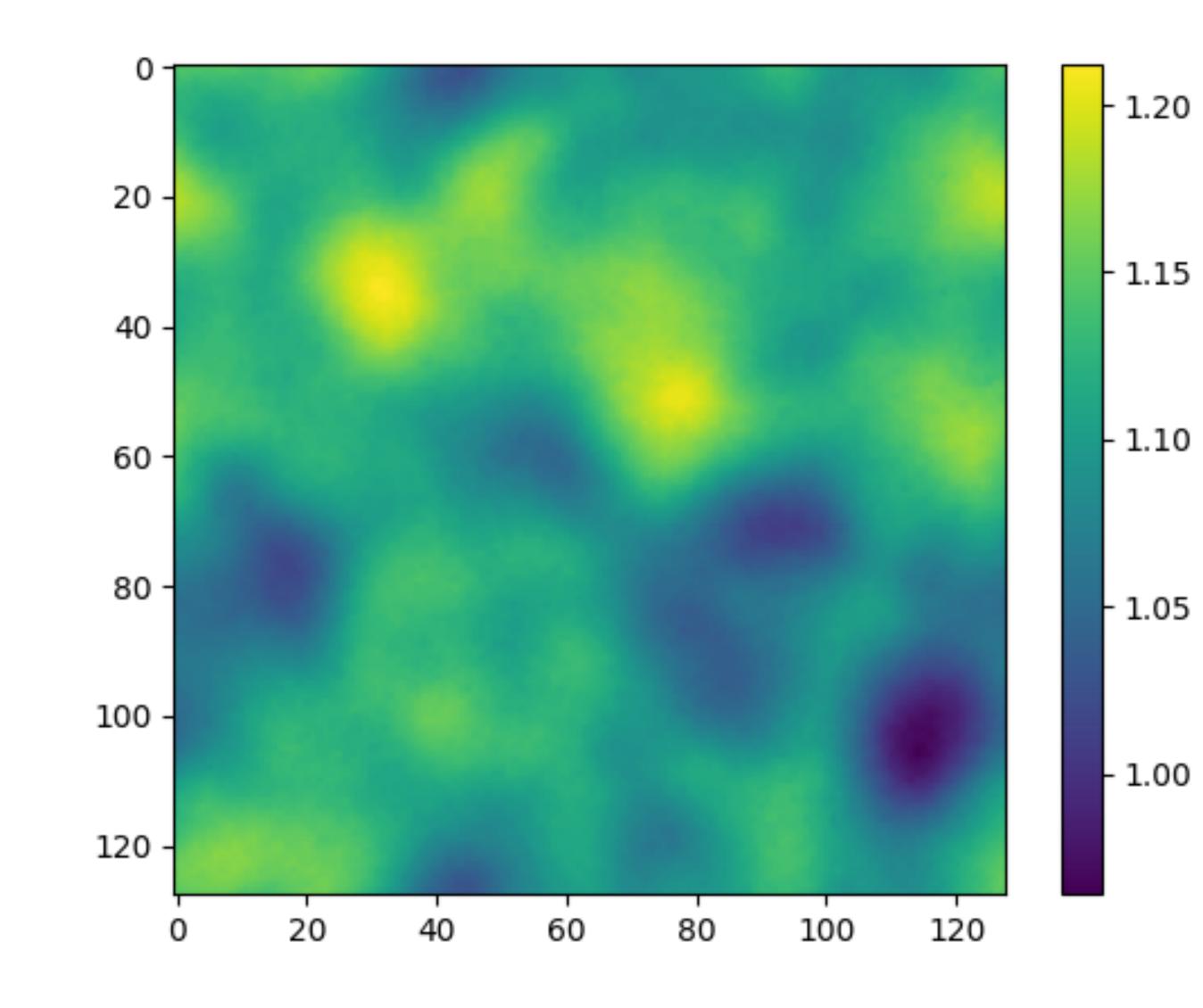


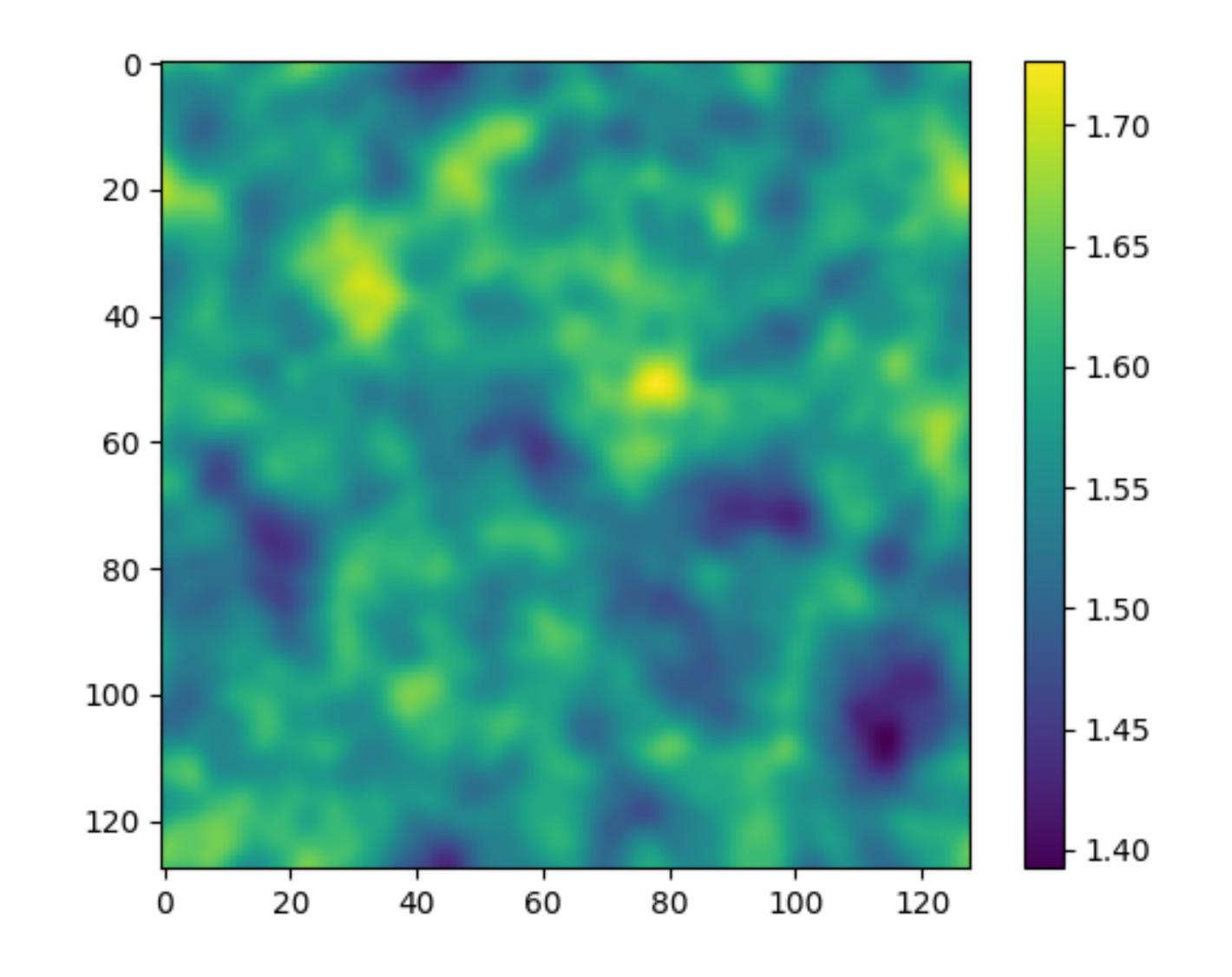


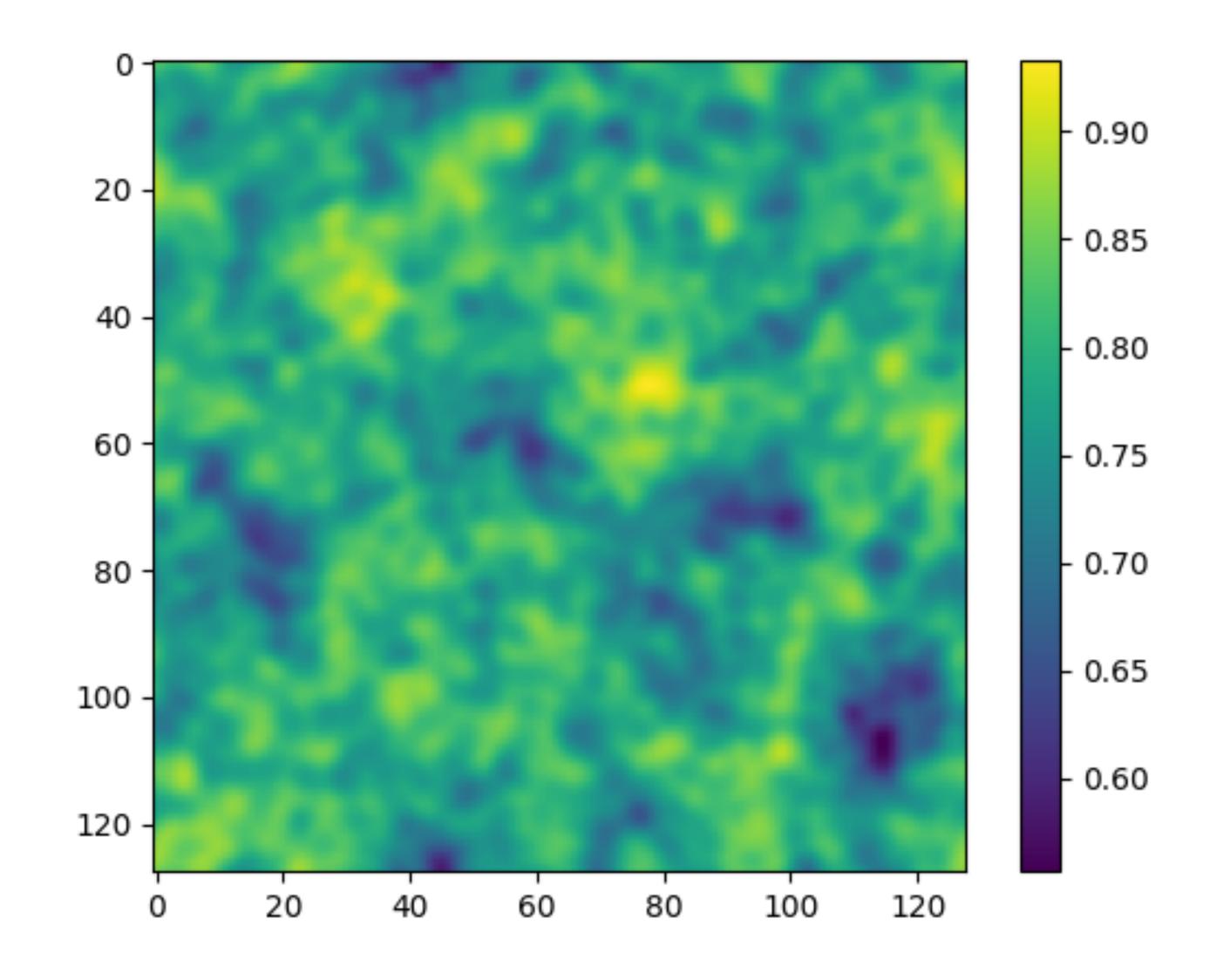
neutral fraction

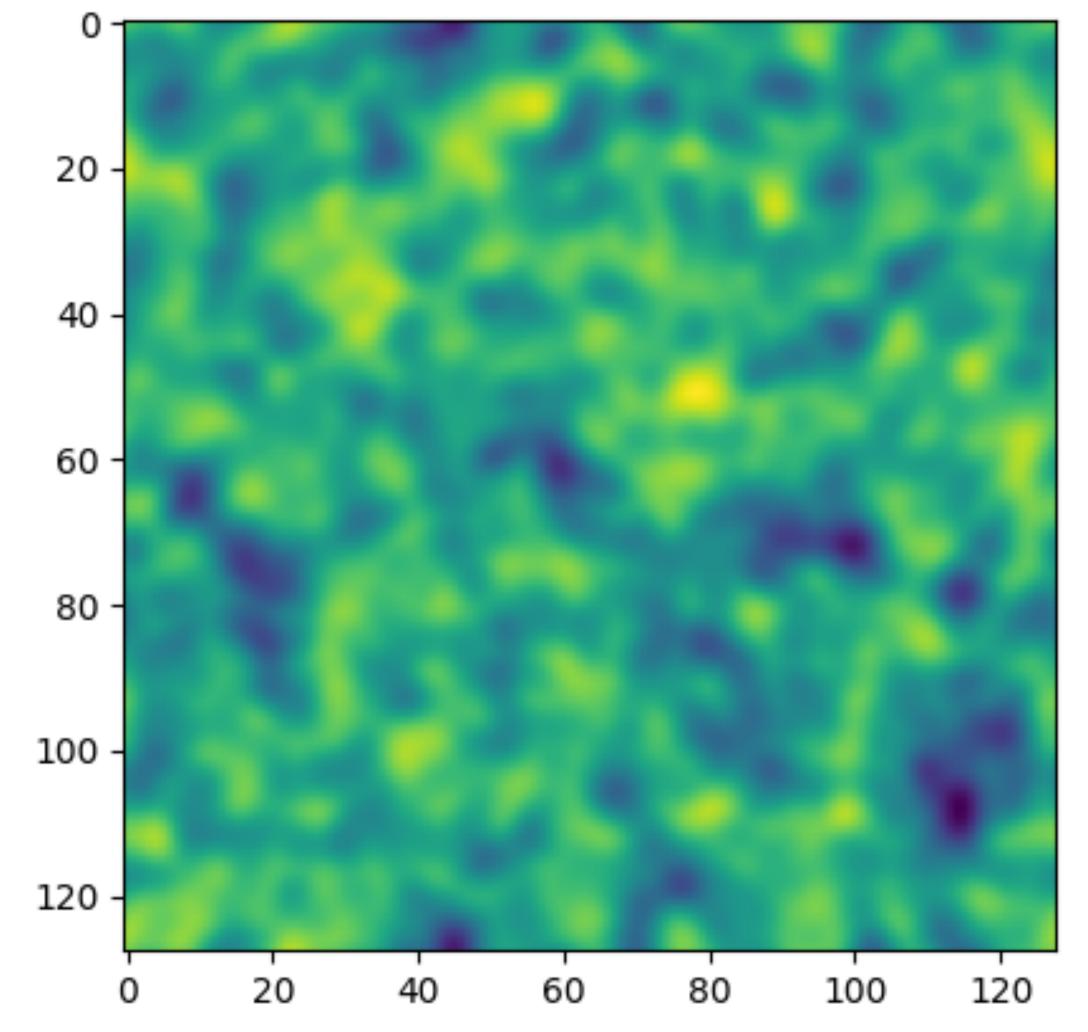




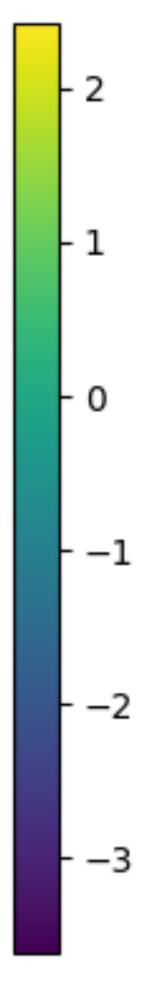




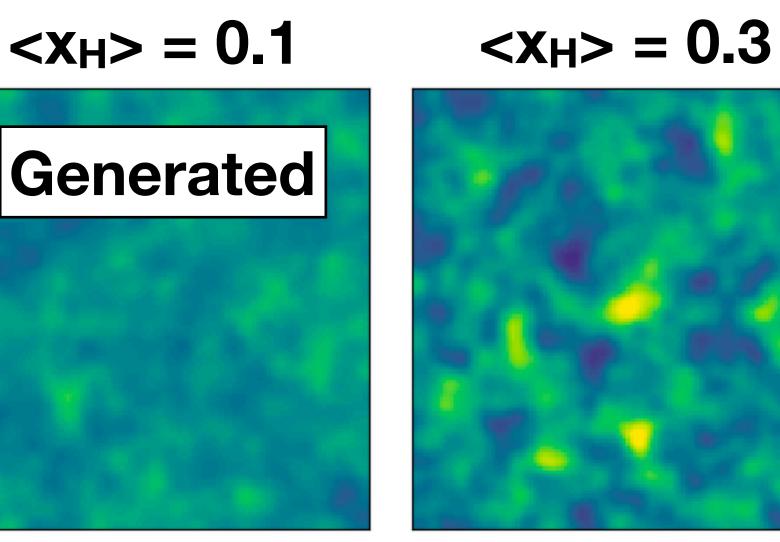


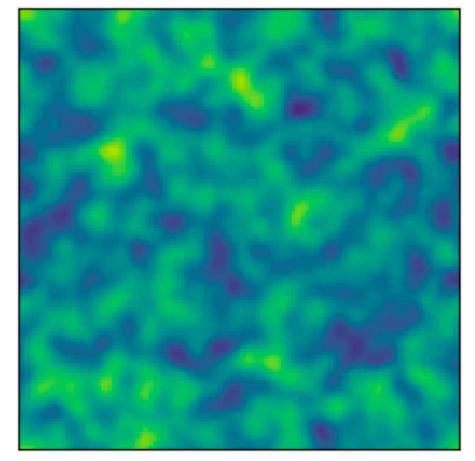


Generated image

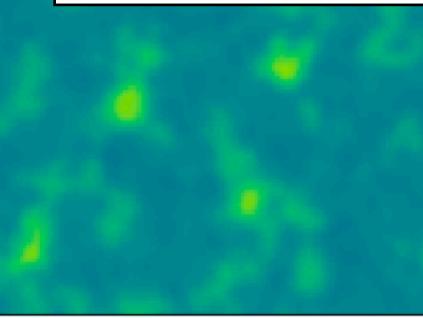


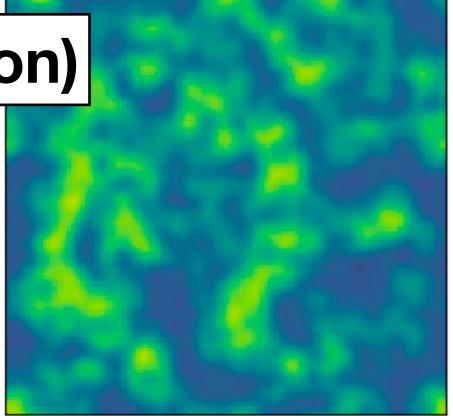
Result: generated images





Real (simulation)





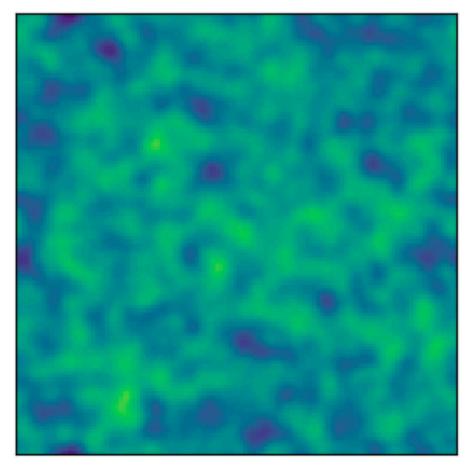


Generated

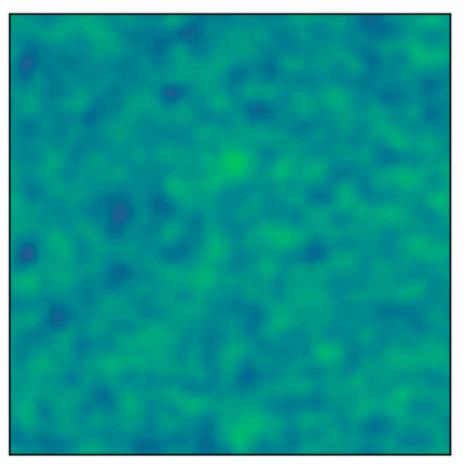
Real

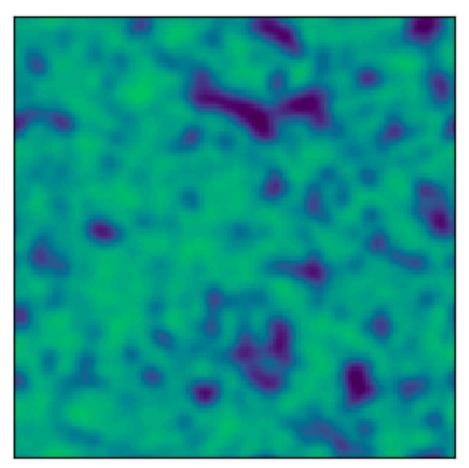
<**X**_H> = 0.5

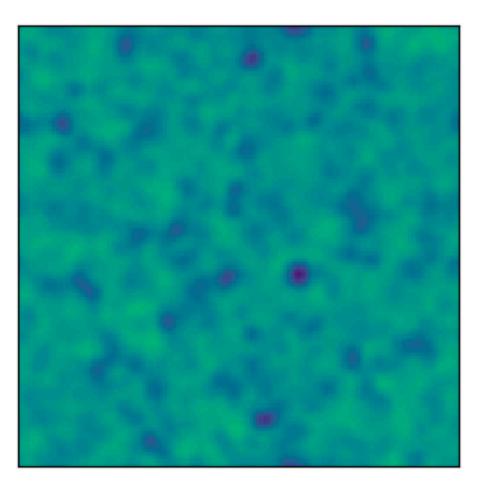
<X_H> = 0.7



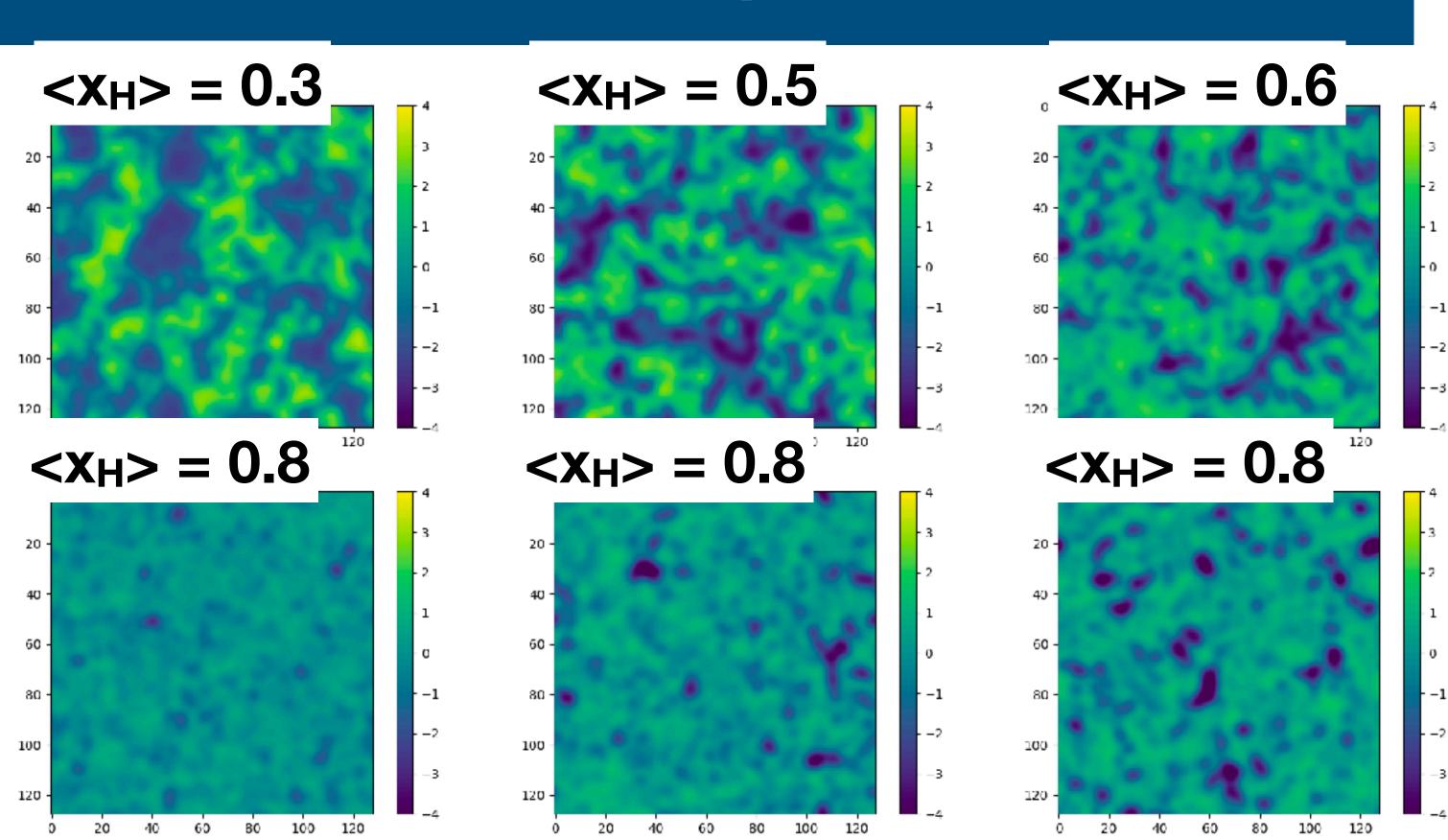
<X_H> = 0.9

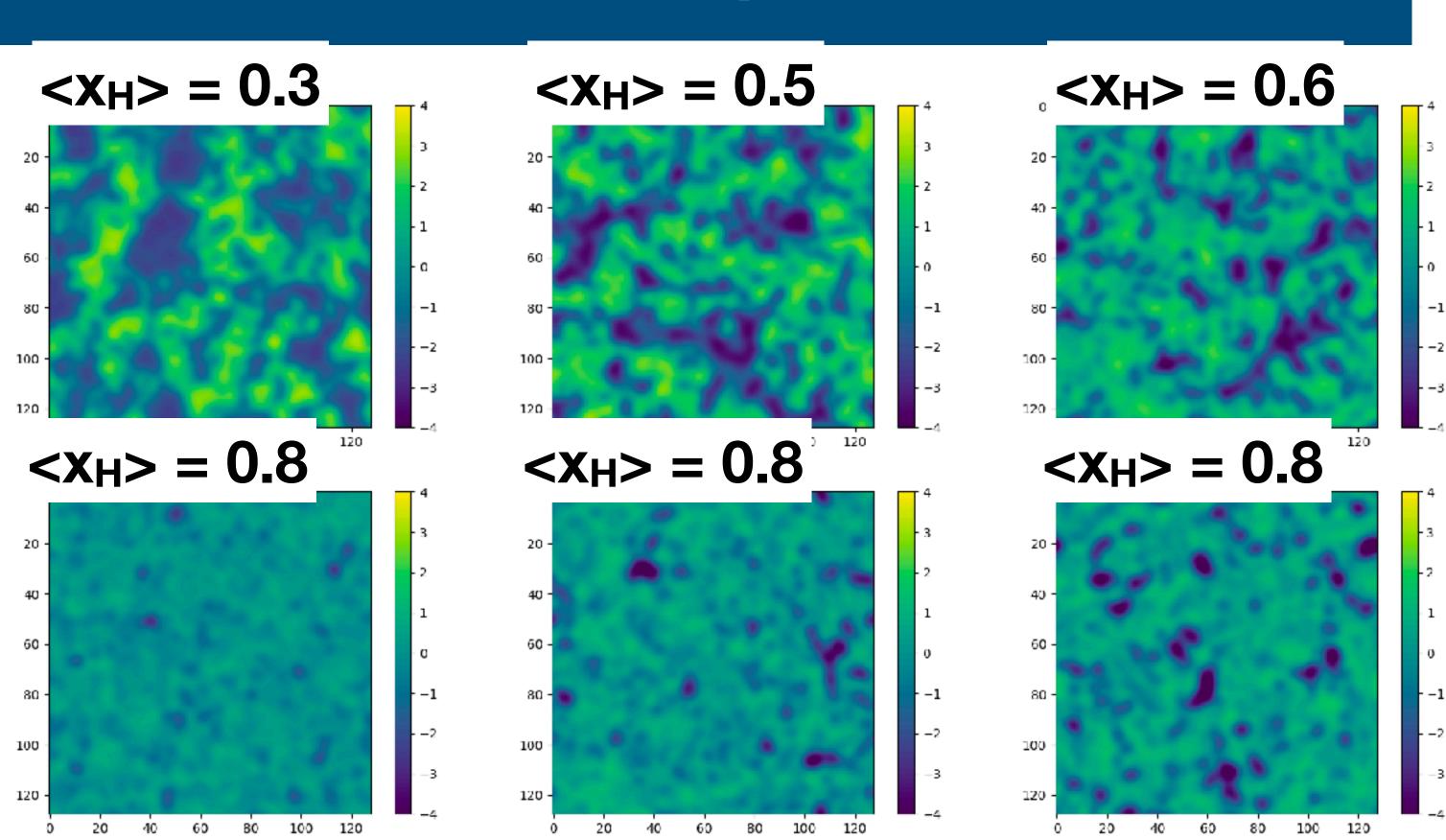




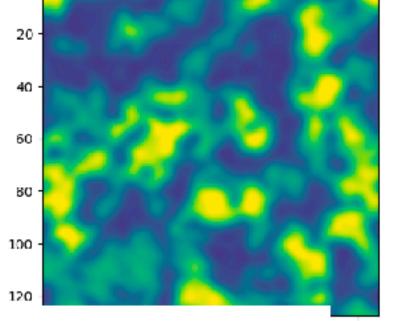


Result: transformation into latent space

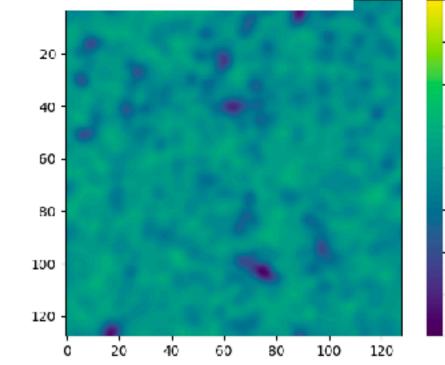


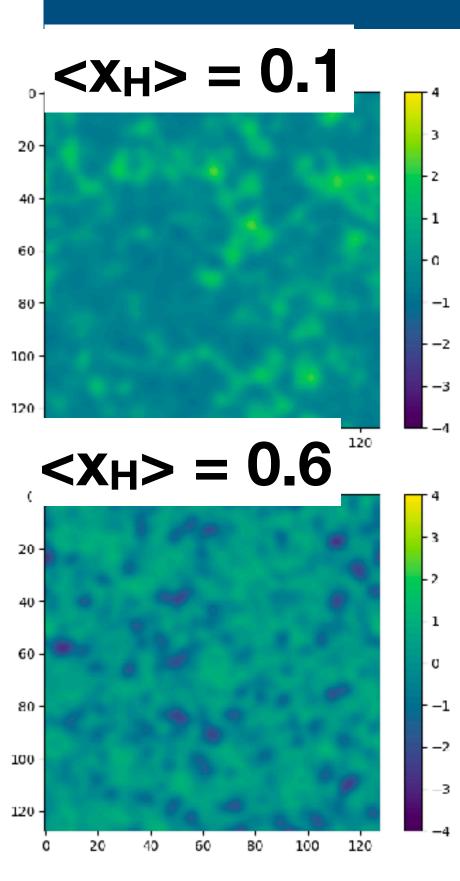


. **<X**H**>** = 0.3



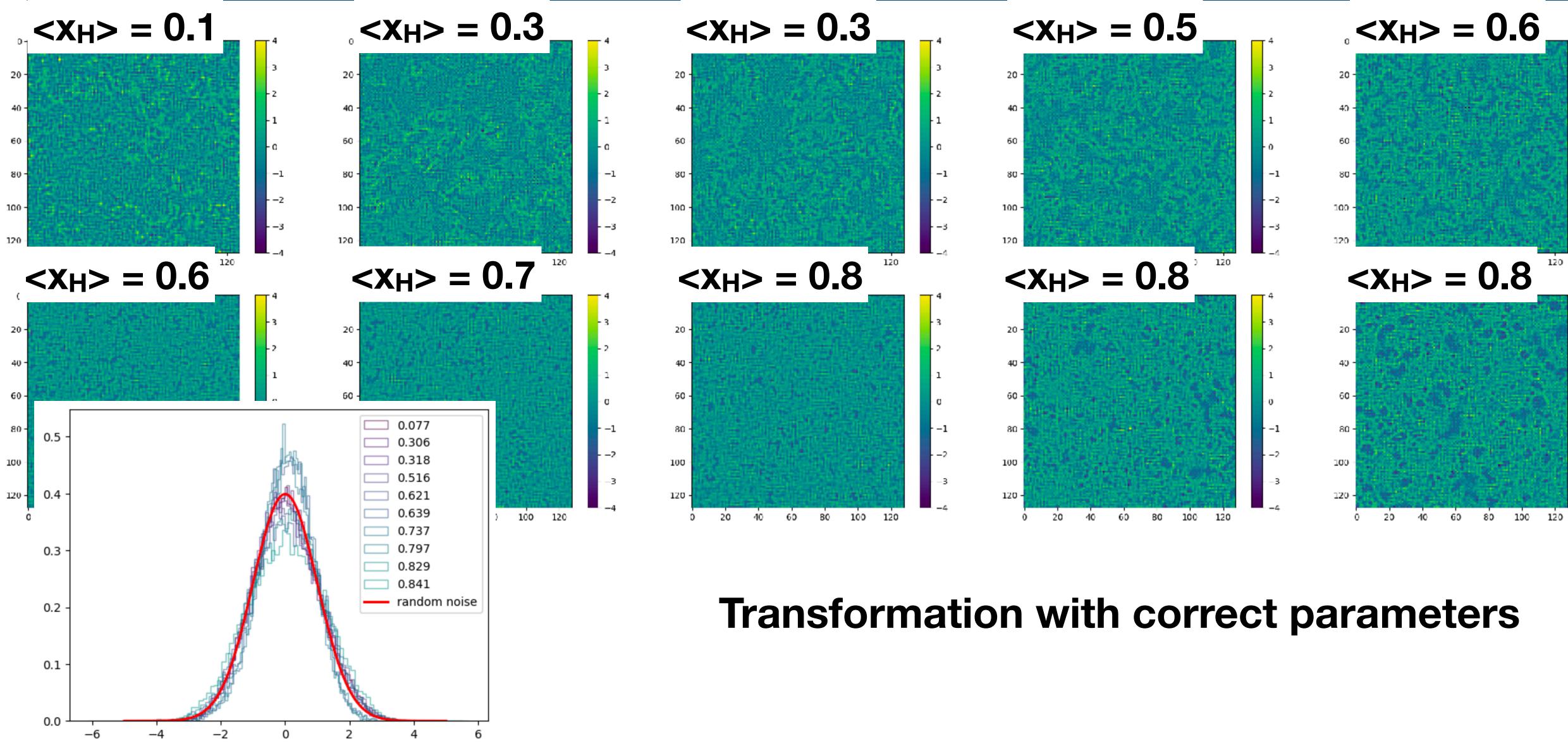
<X_H> = 0.7



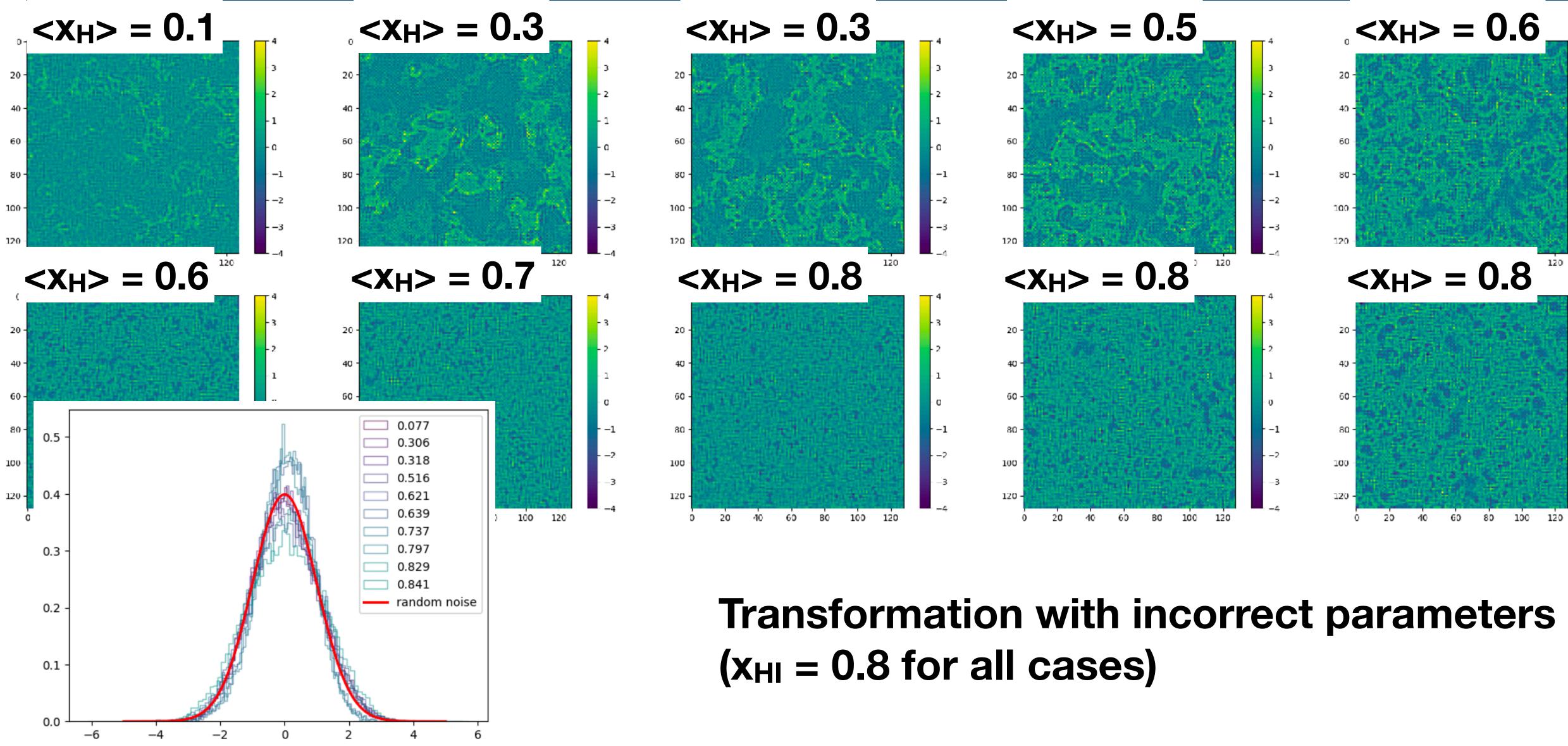


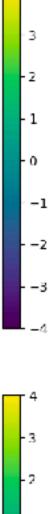
Randomly sampled simulation data (test data)

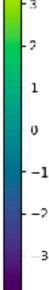
Result: transformation into latent space



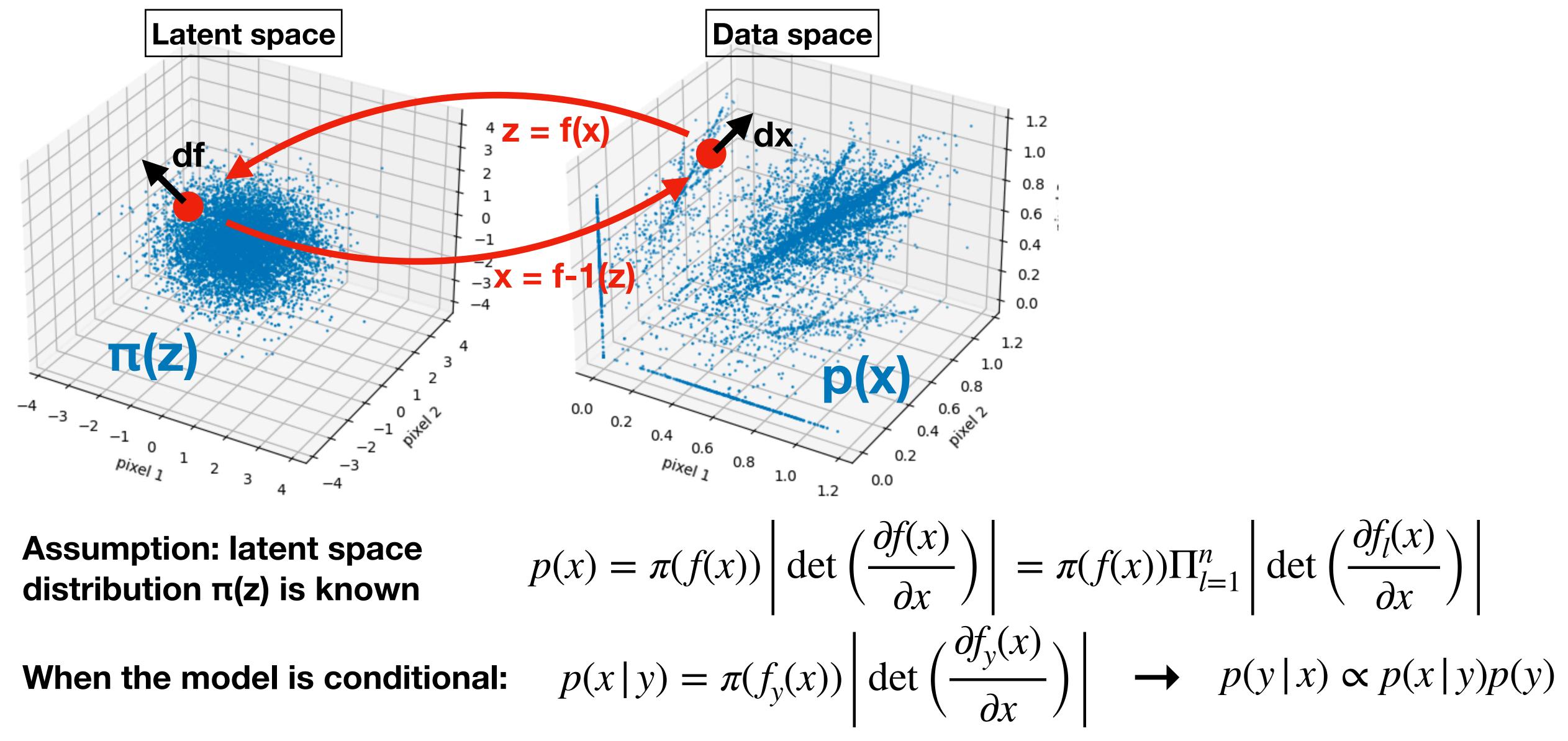
Result: transformation into latent space



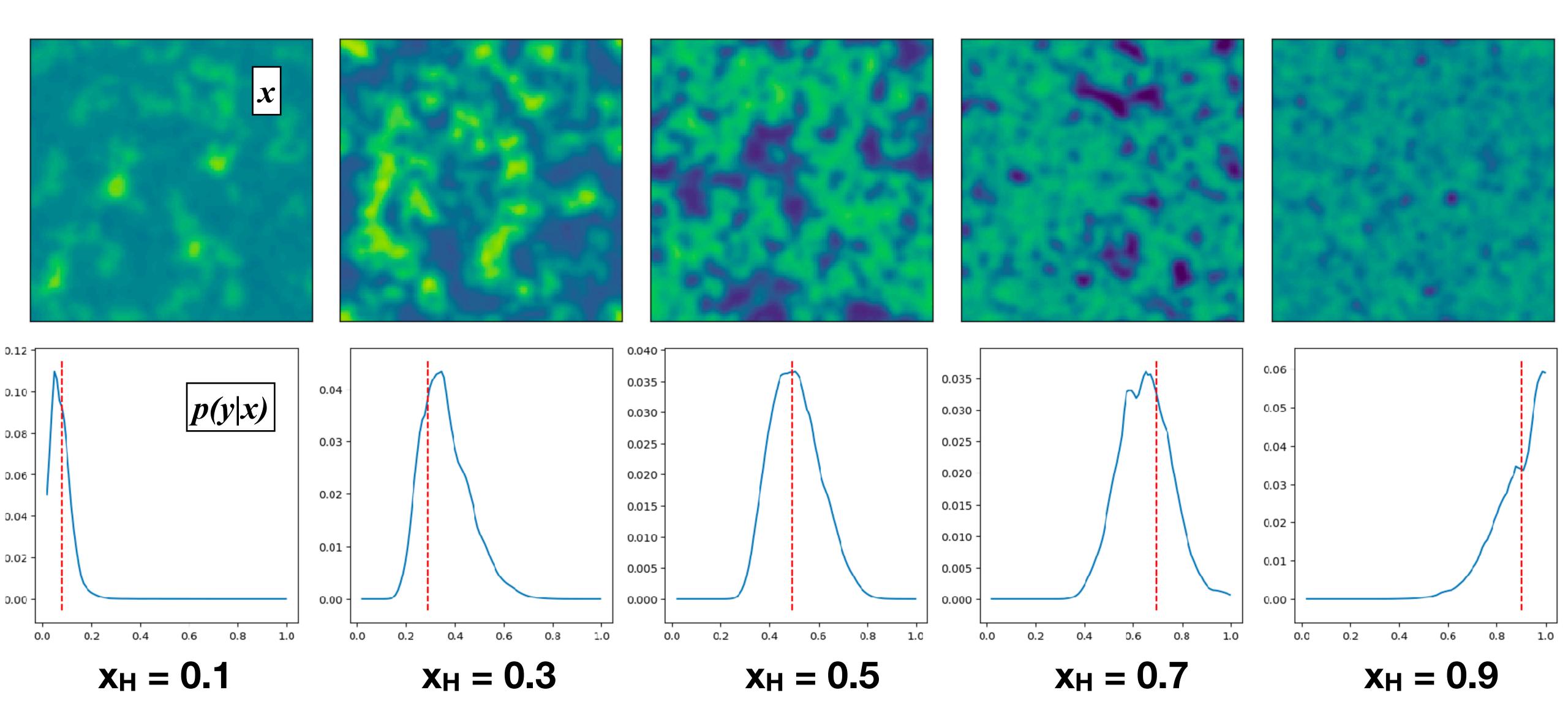




Computation of the probability density

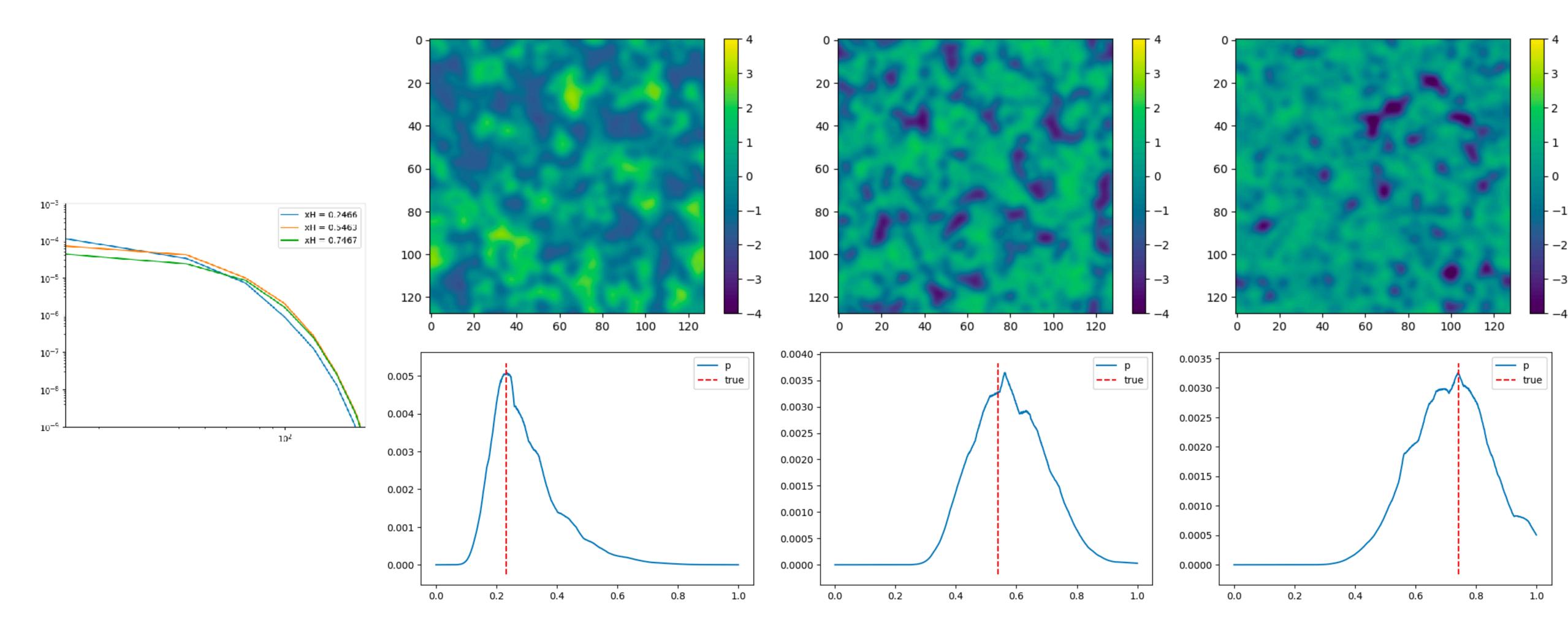


Result: parameter inference

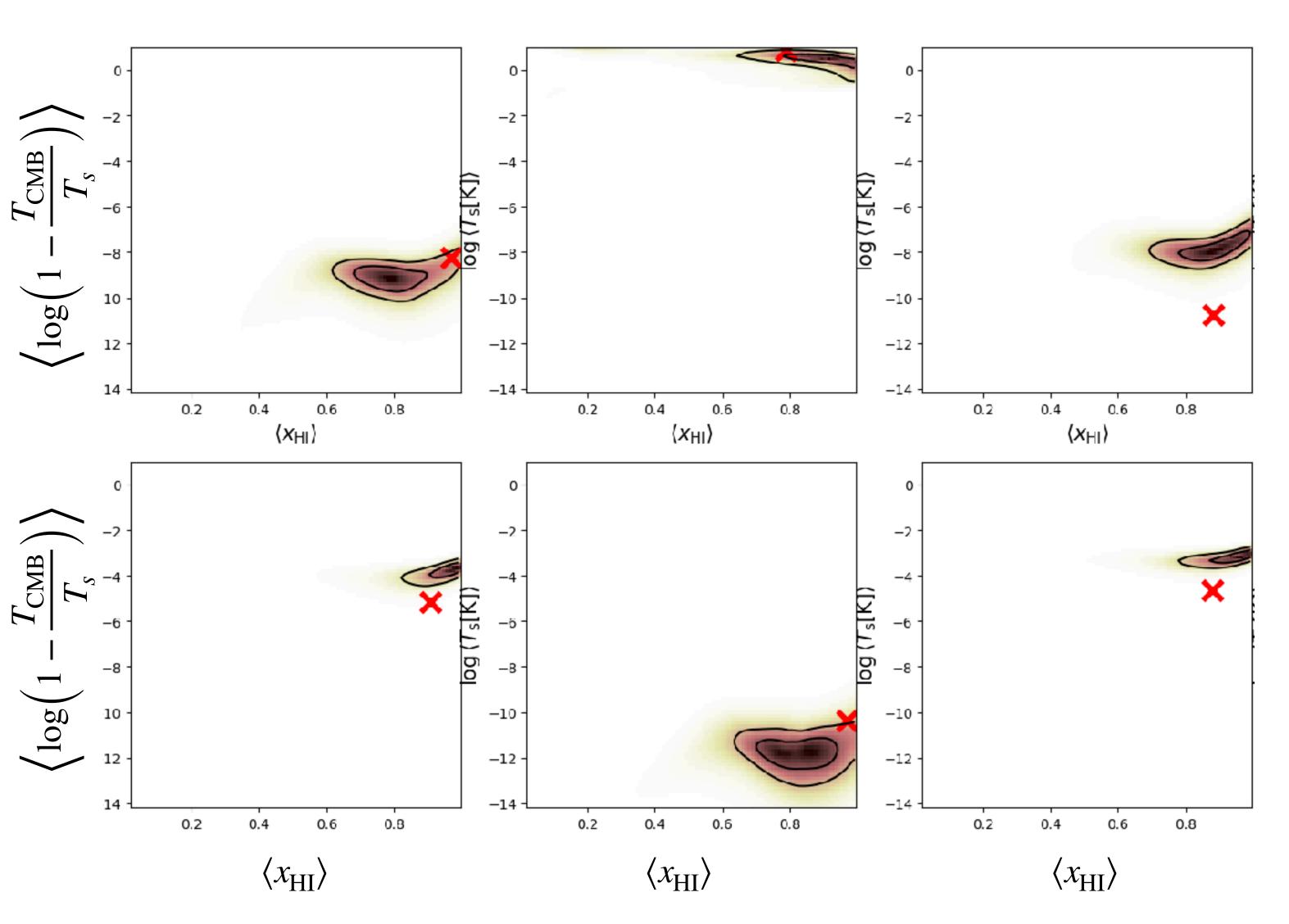


Is it learning something beyond power spectrum?

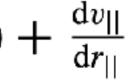
Test with three samples with similar power



Inferring both ionization and heating state



21cm signal $\delta T_{21} = T_0 x_{\text{HI}} (1 + \delta_{\rho}) \left(1 - \frac{T_{\text{CMB}}}{T_{\text{s}}} \right) \frac{H}{H(z)}$



- from EoR 21 cm maps
- Issues
 - Noise and smoothing are too simple
 - Foregrounds are not included
 - **Tested only one specific simulation**
 - Is it better to directly use uv-plane than images?
 - **Could deep-learning methods extract more information than** Θ using summary statistics?
 - Is NF better than the other CNN-based models? In what aspect? ()

Normalizing flow could be a good tool for fully extracting information

Questions, comments, and suggestions are welcome!

