
Estimating EoR parameters with deep learning

Kana Moriwaki (The University of Tokyo)

Hongo 21cm workshop
3-4 Oct. 2024

Estimating EoR parameters

Abdurashidova+2022 (HERA collaboration)

What summary statistics to use?

HERA 2022

Power spectrum Bispectrum
WST

wavelet scattering transform

Greig+2023Shimabukuro+2017

Image?

Imaging is expected be possible at the late stage of SKA1 or in SKA2

Can we directly deal with
the image cubes?

Generative models

Image from https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

There are several different generative models

Might not be the SOTA
in terms of generation
quality… But NF tells us
about the probability
density

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Data space ⇔ Latent space

Flow-based models transfer data into latent space with invertible functions.
data space:

256×256 dimension latent space

← distribution of pixel
values of 21cm map

f: invertible

• When generating a new data, one can sample a random point in the latent space and apply “f-1”
• Invertible functions can be used to infer the probability density of a given data

f-1(z)

f(x)

Well-known distribution
(e.g., Gaussian)

What transformation to use?

Transformations are invertible and their determinants can be (easily) computed
Examples:

f(x) = (3 2
0 4) x f −1(x) = (1/3 −1/6

0 1/4) x, det (∂f(x)
∂x) = 3 × 4

f : permutation f −1 : inverse permutation, det (∂f(x)
∂x) = 1

permute pixel 0 and 3

Hassan+ 2022: application of NF to post-reionization 21cm maps

Generated LSS images

Cosmological parameter inference

Dai+2022: Translation and Rotation Equivariant Normalizing Flow

Generated LSS images Cosmological parameter inference

What transformation to use?

Transformations are invertible and their determinants can be (easily) computed
Examples:

f(x) = (3 2
0 4) x f −1(x) = (1/3 −1/6

0 1/4) x, det (∂f(x)
∂x) = 3 × 4

f : permutation f −1 : inverse permutation, det (∂f(x)
∂x) = 1

permute pixel 0 and 3

Translation and Rotation Equivariant Normalizing Flow (TRENF; Dai+2022)

: Monotonic nonlinear function
: non-zero function

Let us use NF for EoR 21cm map!

Transformation
parameters
T1, T2, …, TN

neutral fraction

NN

21cm map + noise + smoothing

Training data:
21cmFAST with different
parameters of f*. α*, fesc,
αesc, t*, Mturn, LX, E0, αX

Latent variable

Result: transform to noise

Result: transform to noise

Result: transform to noise

Result: transform to noise

Result: transform to noise

Result: transform to noise

Generation of new images

Transformation
parameters
T1, T2, …, TN

neutral fraction

NN

21cm map + noise + smoothing Latent variable

Transformation
parameters
T1, T2, …, TN

neutral fraction

NN

21cm map + noise + smoothing Latent variable

Generation of new images

Result: transform from random noise

Result: transform from random noise

Result: transform from random noise

Result: transform from random noise

Result: transform from random noise

Result: transform from random noise

Generated image

Result: generated images

Real (simulation)

Generated

<xH> = 0.1 <xH> = 0.3 <xH> = 0.5 <xH> = 0.7 <xH> = 0.9

Result: transformation into latent space

Randomly sampled simulation data (test data)

<xH> = 0.1 <xH> = 0.3 <xH> = 0.3 <xH> = 0.5 <xH> = 0.6

<xH> = 0.6 <xH> = 0.7 <xH> = 0.8 <xH> = 0.8 <xH> = 0.8

Result: transformation into latent space

Transformation with correct parameters

<xH> = 0.1 <xH> = 0.3 <xH> = 0.3 <xH> = 0.5 <xH> = 0.6

<xH> = 0.6 <xH> = 0.7 <xH> = 0.8 <xH> = 0.8 <xH> = 0.8

Result: transformation into latent space

Transformation with incorrect parameters
(xHI = 0.8 for all cases)

<xH> = 0.1 <xH> = 0.3 <xH> = 0.3 <xH> = 0.5 <xH> = 0.6

<xH> = 0.6 <xH> = 0.7 <xH> = 0.8 <xH> = 0.8 <xH> = 0.8

Computation of the probability density

dxdf

π(z) p(x)

z = f(x)

x = f-1(z)

Latent space Data space

Assumption: latent space
distribution π(z) is known p(x) = π(f(x)) det (∂f(x)

∂x) = π(f(x))Πn
l=1 det (∂fl(x)

∂x)
p(x |y) = π(fy(x)) det (

∂fy(x)
∂x)When the model is conditional: p(y |x) ∝ p(x |y)p(y)→

Result: parameter inference

xH = 0.1 xH = 0.3 xH = 0.5 xH = 0.7 xH = 0.9

p(y|x)

x

Is it learning something beyond power spectrum?

Test with three samples with similar power

Inferring both ionization and heating state

21cm signal

⟨lo
g (1−

T C
M

B
T s

)⟩
⟨lo

g (1−
T C

M
B

T s
)⟩

⟨xHI⟩ ⟨xHI⟩ ⟨xHI⟩

Summary

• Normalizing flow could be a good tool for fully extracting information
from EoR 21 cm maps

• Issues
Noise and smoothing are too simple
Foregrounds are not included
Tested only one specific simulation
Is it better to directly use uv-plane than images?

Could deep-learning methods extract more information than
using summary statistics?
Is NF better than the other CNN-based models? In what aspect?

Questions, comments, and suggestions are welcome!

