Searching for cosmic missing baryons with DIOS (Diffuse Intergalactic Oxygen Surveyor)

Yasushi Suto Department of Physics University of Tokyo

October 8, 2003@IV ICGA, Ewha Univ., Seoul, Korea

Searching for cosmic missing baryons with DIOS (Diffuse Intergalactic Oxygen Surveyor)

astro-ph/0303281 PASJ(2003) October issue, in press

Univ of Tokyo: K. Yoshikawa Y.Suto **ISAS:** N. Yamasaki K. Mitsuda **Tokyo Metropolitan Univ.:** T. Ohashi Nagoya Univ.: Y. Tawara A. Furuzawa

October 8, 2003@IV ICGA, Ewha Univ., Seoul, Korea

DOS: <u>D</u>iffuse <u>Intergalactic</u> <u>Oxygen</u> <u>S</u>urveyor

A Japanese proposal of a dedicated X-ray mission to search for missing baryons

- A dedicated satellite with cost < 40M USD to fill the gap between Astro-E2 (2005) and NeXT (2010?). Launch at Japan in 2008 (?).
- Unprecedented energy spectral resolution $\Delta E=2eV$ in soft X-ray band (0.1-1keV)
- Aim at detection of (20-30) percent of the total cosmic baryons via Oxygen emission lines
 - $\Delta E=2eV$, $S_{eff} \Omega=100 [cm^2 deg^2]$
 - flux limit = 6x10⁻¹¹ [erg/s/cm²/str]
- PI: Takaya Ohashi (Tokyo Metropolitan Univ.)

Where are the baryons? cosmic baryon budget Fukugita, Hogan & Peebles: ApJ 503 (1998) 518 $\Omega_{star} + \Omega_{HI} + \Omega_{H_2} + \Omega_{hot X-ray} = 0.0068^{+0.0041}_{-0.0030}$ $\Omega_{_{BBN}} = 0.04 \quad (h = 0.7)$ VS Maximum Minimum Component Central Grade^a Observed at $z \approx 0$ 1. Stars in spheroids $0.0026 h_{70}^{-1}$ $0.0043 h_{70}^{-1}$ $0.0014 h_{70}^{-1}$ Α $0.00086 h_{70}^{-1}$ 2. Stars in disks $0.00129 h_{70}^{-1}$ $0.00051 \ h_{70}^{-1}$ A – B A 3. Stars in irregulars $0.000069 h_{70}^{-1}$ $0.000116 h_{70}^{-1}$ $0.000033 h_{70}^{-1}$ 4. Neutral atomic gas $0.00033 h_{70}^{-1}$ $0.00041 h_{70}^{-1}$ $0.00025 \ h_{70}^{-1}$ A – 5. Molecular gas $0.00030 h_{70}^{-1}$ $0.00037 h_{70}^{-1}$ $0.00023 h_{70}^{-1}$ A $0.0026 \ h_{70}^{-1.5}$ $0.0044 \ h_{70}^{-1.5}$ $0.0014 h_{70}^{-1.5}$ 6. Plasma in clusters В $0.0115 h_{70}^{-1.5}$ $0.0029 \ h_{70}^{-1.5}$ $0.0056 h_{70}^{-1.5}$ 7a. Warm plasma in groups $0.0007 h_{70}^{-1}$ $0.003 h_{70}^{-1}$ С $0.002 h_{70}^{-1}$ 7b. Cool plasma $0.0072 h_{70}^{-1}$ в $0.014 h_{70}^{-1}$ $0.030 h_{70}^{-1}$ 7'. Plasma in groups 8. Sum (at h = 70 and $z \simeq 0$)..... 0.021 0.041 0.007 . . .

The observed baryons in the present universe amount merely to (10 ~ 30)% of the big-bang nucleosynthesis prediction and WMAP value

Four phases of cosmic baryons Dave et al. ApJ 552(2001) 473 <u>Condensed:</u> >1000, T<10⁵K Stars + cold intergalactic gas ■ *<u>Diffuse:</u>* <1000, T<10⁵K Photo-ionized intergalactic medium Ly absorption line systems ■ *Hot:* T>10⁷K X-ray emitting hot intra-cluster gas ■ <u>Warm-hot</u>: 10⁵K<T<10⁷K Warm-hot intergalactic medium (WHIM) 5

Where are the baryons?

~ 40% of total baryons are Warm-Hot Intergalactic Medium (WHIM) with $10^{5}K < T < 10^{7}K$

Cen & Ostriker : ApJ 514 (1999) 1

Tracing the structure with Oxygen

Dark matter

Galaxies

Ovi

Ovii

Oviii

dark matter, hot gas and "galaxies"

SPH simulation: CDM, (75h⁻¹Mpc)³ box (Yoshikawa, Taruya, Jing & Suto 2001)

Large-scale structure in SPH simulation

(75h⁻¹Mpc)³ box CDM @ z=0 N=128³ :DM particles N=128³ :gas particles

(Yoshikawa et al. 2001)

Warm gas (10⁵K<T<10⁷K)

A cluster region in SPH simulation

A (30h⁻¹Mpc)³ box around a massive cluster at z=0 CDM SPH simulation (Yoshikawa et al. 2001)

Hot gas (T>10⁷K)

Warm gas (10⁵K<T<10⁷K)

WHIM as missing cosmic baryons

 ~ 40% of the total cosmic baryons may exist as Warm-Hot Intergalactic Medium (WHIM) with 10⁵K<T<10⁷K

 WHIM is supposed to distribute diffusely along filamentary structures connecting nearby clusters/ groups of galaxies

Direct detection of WHIM is difficult

 OVI absorption line systems in UV (1032Å, 1038Å doublets)

OVII (574.0 eV) and OVIII (653.6 eV) absorption line systems in X-ray spectra of background QSOs

Bumpy features in Soft X-ray background spectrum

Oxygen lines

Ονιι	1s ² – 1s2s (³ S ₁)	561eV	22.1
Ονιι	1s ² – 1s2p (³ P ₁)	568eV	21.8
Ονιι	1s ² – 1s2p (¹ P ₁)	574eV	21.6
Ονιιι	1s — 2p (Ly)	653eV	19.0
Ονιι	1s ² – 1s3p	665eV	18.6
Ονιιι	1s — 3p (Ly)	775eV	16.0
Neix	$1s^2 - 1s2s (^3S_1)$	905eV	13.7
Neix	1s ² – 1s2p (³ P ₁)	914eV	13.6
Neix	$1s^2 - 1s^2 p (^1P_1)$	921eV	13.5

X-ray forests: shadow of WHIM Absoption line systems of OVI, OVII, and OVIII in the X-ray continuum spectra of background quasars

الارد بدايده التوبالتين فروي الجار فبنواك

0.004

Nicastro et al. (2002)

 $δ=60, T=10^{6} K,$ L_{size}~3Mpc, z~0

Fang et al. (2002) a small galaxy group and HI Ly-a clouds δ =50~350, T=10⁶K, L_{size}~8Mpc, z~0.06

Emission lines of Oxygen in WHIM

Ovii (561eV, 568eV, 574eV, 665eV), Oviii (653eV)

Why oxygen emission lines ?

- Most abundant other than H and He
- Good tracers of gas around T=10⁶ ~ 10⁷ K
- No other prominent lines in E=500-660eV
- Not restricted to regions towards background QSOs

<u>systematic WHIM survey</u>

Requirements for detection

Good energy resolution to identify the emission lines from WHIM at different redshifts X-ray calorimeter using superconducting $\Box \Delta E < 5eV$ TES (Transition Edge Sensor) Large field-of-view and effective area for survey \Box S_{eff} = 100cm², Ω =1deg² 4-stage reflection telescope Angular resolution is not so important (but useful in removing point source contaminations)

$$\theta \approx 1^{\circ} \left(\frac{600 \, h^{-1} \mathrm{Mpc}}{D} \right) \left(\frac{L}{10 \, h^{-1} \mathrm{Mpc}} \right)$$

Comparison with other missions

i	$S_{eff}\Omega \ [cm^2 deg^2]$	Δ E [eV]	f _{limit} [erg/s/cm ² /sr
Chandra ACIS-S3	12	80	10-9
XMM-Newton EPIC-	pn 100	80	3x10 ⁻¹⁰
Astro-E II XRS	0.23	6	2x10 ⁻⁸
Astro-E II XIS	36	80	6x10 ⁻¹⁰
XEUS-I	16.7	2	2.5x10 ⁻¹⁰
DIOS	100	2	6x10⁻¹¹

eine bie Dessater Barts

Light-cone output from simulation

- Cosmological SPH simulation in Ω_m=0.3,
 Ω_Λ=0.7, σ₈=1.0, and h=0.7 CDM with N=128³ each for DM and gas (Yoshikawa, Taruya, Jing, & Suto 2001)
- Light-cone output from z=0.3 to z=0 by stacking 11 simulation cubes of (75h⁻¹Mpc)³ at different z
 5 ° × 5 ° FOV mock data in 64x64 grids on the sky
 128 bins along the redshift direction (∆z=0.3/128)

Surface brightness on the sky

Metallicity models **Oxygen enrichment scenario in IGM**

Metallicity of WHIM is quite uncertain **Adopted models for metallicity distribution**

Model I : uniform and constant $Z = 0.2 \overline{Z_{solar}}$ Model II : uniform and evolving $Z = 0.2 Z_{solar}(t/t_0)$ **Model III** : density-dependent (Aguirre et al. 2001) $Z = 0.005 Z_{solar} (\rho/\rho_{mean})^{0.33}$ (galactic wind driven)

Model IV : density-dependent (Aguirre et al. 2001) $Z = 0.02 Z_{solar} (\rho/\rho_{mean})^{0.3}$ (radiation pressure driven)

Creating Mock spectra from light-cone output

For a given exposure time,

- convolve the emissivity according to gas density and temperature in (5°/64)² pixels over the lightcone
- Add the Galactic line emission (McCammon et al. 2002)
- Add the cosmic X-ray background contribution (power-law+Poisson noise)

Then statistically subtract the Galactic emission and the CXB and obtain the residual spectra for $\Delta E = 2eV$ resolution.

Simulated spectra: region A

X

Temperature

overdensity

 $0.94^{\circ} \times 0.94^{\circ} = 0.88 \text{ deg}^2$ T_{exposure}= 3x10⁵sec

Simulated spectra: region D

 $19'x19' = 0.098 \text{ deg}^2$ T_{exposure}=10⁶sec

Expected S/N for OVIII line

Assuming the detector of $S_{eff}\Omega = 100 \text{ cm}^2\text{deg}^2$ and $\Delta E = 2\text{eV}$

Physical properties of the probed baryons

Each symbol indicate the temperature and the over-density of gas at each simulation grid (4x4 smoothed pixels over the sky and $\Delta z = 0.3/128)$

 $S_{x} > 3x10^{-10} \text{ [erg/s/cm²/sr]}$ $S_{x} > 6x10^{-11} \text{ [erg/s/cm²/sr]}$ $S_{x} > 10^{-11} \text{ [erg/s/cm²/sr]}$

Dependence on the metallicity model

- We have adopted model I (constant 0.2 solar metallicity) so far
- Density-dependent metallicity models show stronger emission lines.

WHIM will be unambiguously detected with our proposed mission

Expected fraction of WHIM detectable via Oxygen emission lines (in principle)

Our proposed mission (flux limit = $6x10^{-11}$ [erg/s/cm²/str]) will be able to detect (20-30) percent of the total cosmic baryons via Oxygen emission lines in principle.

Detectability of Warm-Hot Intergalactic Medium via Oxygen emission lines

- Mock spectra from cosmological SPH simulation
- With our proposed mission (20-30) percent of the total cosmic baryons will be detected via Oxygen emission lines in principle.
 - $\Delta E = 2eV$, $S_{eff} \Omega = 100 [cm^2 deg^2]$
 - flux limit = $6x10^{-11}$ [erg/s/cm²/str]

Things remain to be checked

- Validity of the collisional ionization equilibrium ?
- How to properly identify the oxygen lines from the background/noises in reality ?

MBE: a competing proposal

PI: Wilt Sanders (UW-Madison SSEC)
X-Ray Calorimeter Telescope Development
UW-Madison, NASA/GSFC, Lockheed-Martin
Spacecraft: Spectrum Astro SA-200S Bus
Time schedule: the concept study start is in November
2003, and launch is scheduled for August 2007.
Cost: \$118.96M in FY2003 USD

UW-Madison Space Science and Engineering Center Missing Baryon Explorer

Surveys of the Low Energy X-Ray Diffuse Background to Complete Our Picture of the Universe http://www.ssec.wisc.edu/baryons/index.html