

Confronting the CDM paradigm Confronting the CDM paradigm with numerical simulations with numerical simulations

្ញ

Yasushi Suto Yasushi Suto Department of Physics, University of Tokyo

Outline of the talk Outline of the talk

- **Example A brief overview of the "evolution** \blacksquare **of simulations of simulations " of large of large -scale structure structure**
- **Results from recent analyses of the** SDSS (Sloan Digital Sky Survey) galaxy distribution
- **Example 3 Searching for cosmic missing baryon Inc.** via oxygen emission lines
- **. Density profiles of dark matter halos**

Well-known exponential evolution of "N"

Evolution of LSS simulations 1970s: aiming at understanding nonlinear gravitational clustering in the nonlinear gravitational clustering in the expanding universe expanding universe Simulation particles = galaxies (why not ?) Simulation particles = galaxies (why not ?) **Example 3 Is alse in Statistical description of LSS using two** point correlation **n** More physics-oriented than astronomy **1980s:** predicting galaxy distribution from dark matter simulations **1990s:** accurate/precision modeling of distribution

of luminous objects

4

The first views of large The first views of large -scale structure of the universe *traced by 8*

Gif animation from ADS scans ation from ADS scans

Miyoshi & Kihara PASJ 27 (1975) 333

 $N = 400$

- White-noise initial condition
	- **Comoving coordinates in** the Einstein – de Sitter universe
	- Periodic boundary condition
	- \blacksquare Plotted on line printer papers (probably using "8" to represent particles to maximize the area)

Motivations of Miyoshi & Motivations of Miyoshi & Kihara (1975) : many years ahead in time : many years ahead in time

As regards the correlation function of the galaxy distribution, main points of interest are the following.

(i) Is the correlation function an inverse power function of the distance? If so, what value do the power index and the characteristic length take?

(ii) How does the correlation function depend on time?

The first problem was analyzed by TOTSUJI and KIHARA (1969). Their results obtained by processing the data of galaxy counts (SHANE and WIRTANEN 1967) are $g(r)=(r_0/r)^s$ with $s=1.75\pm0.05$ and $r_0=(4.4\pm0.6)$ Mpc. PEEBLES (1974) also obtained the index $s=1.77$, mainly working with the same data. The second problem cannot be solved with the observational data, and the purpose of the present paper is to obtain some information by computer simulations.

Does the correlation function of "galaxies" naturally approach a power-law form as discovered by Totsuji & Kihara (1969) ?

Nhat are the power-law index and the law index characteristic length predicted by simulations ? characteristic length predicted by simulations ? **E**volution of the correlation function?

The first movie of cosmological The first movie of cosmological N -body simulations body simulations

a (scale facto r)

 \blacksquare N=1000 (400Kbyte memory) **Nhite-noise initial** condition**Expanding sphere** in the Einstein – de Sitter universe \blacksquare a=1 to 30

Courtesy of Ed Turner (Princeton): Courtesy of Ed Turner (Princeton): digitized from his old 16mm movie film (2min30sec) on the basis of Aarseth, Gott, & Turner (1979)

Evolution of LSS simulations

- 1970s: aiming at understanding nonlinear gravitational clustering in the expanding universe
- **1980s: predicting galaxy distribution 1980s: predicting galaxy distribution from dark matter simulations from dark matter simulations**
	- F **Toward more realistic predictions**
	- **Simulation particles galaxies** galaxies
	- **I.e., galaxy biasing (why not ?)**
	- **E** Systematics like redshift-space distortion
	- **E** Calibrating analytic formulae for nonlinear power spectrum and halo mass function
- **1990s:** accurate/precision modeling of distribution of luminous objects

Biased galaxy formation

- Many seminal results were derived from their simulations evolved from $a=1$ up to $a=1.4$!
- **Illustrates that** the most important is not the quality of simulations but those who interpret.

A latest simulation movieSPH simulation in : dark matter ⇒ **X-ray emitting hot gas** [⇒] **galaxy (Yoshikawa, Taruya, Jing & Suto 2001)**

Outline of the talk Outline of the talk

A brief overview of the "evolution of simulations " of large-scale structure

- **Results from recent analyses of Results from recent analyses of the SDSS (Sloan Digital Sky the SDSS (Sloan Digital Sky Survey) galaxy distribution Survey) galaxy distribution**
- **Searching for cosmic missing baryon** via oxygen emission lines
- **. Density profiles of dark matter halos**

Clustering of luminous objects on the light Clustering of luminous objects on the light -cone 19961996(shallow universe) 20012001 (universe on the light-cone) (universe on the light (universe on the light -cone) 1986 (shallow universe) (shallow universe) (local universe) ¹⁹⁸⁶ (local universe) (local universe) cone)

CfA redshift survey: de Lapparent et al.(1986) Evolution along the light-cone is directly accessible accessible now !

z=0.05

(150h-1Mpc)

Las Campanas redshift survey: Schectman

12**http://www.2dfquasar.org** now !**et al. (1996) 2dF QSO survey:**

The latest slice of the universe: Tour of SDSS Data Release 1 Tour of SDSS Data Release 1

http://www.sdss.org/dr1/

from Japanese TV program "Science ZERO" (NHK)

Tour in SDSS DR1 galaxies Tour in SDSS DR1 galaxies

from Japanese TV program "Science ZERO" (NHK)

Topology of SDSS galaxy distribution

Topology of SDSS galaxy distribution (measured with Minkowski Functionals) is consistent with those originated from the primordial random-Gaussian field in ΛCDM (Hikage, Schmalzing, Buchert, Suto et al 2003 PASJ).

SDSS DR1 galaxies: morphology dependent clustering morphology dependent clustering

 Late -types in blue in blueEarly-types in red

Density morphology morphology relation is barely visible

from Japanese TV program "Science ZERO" (NHK)

Morphology-dependent SDSS galaxy bias

p. Galaxy bias is fairly scale-independent

E Clear morphology dependence: **b=1.2** 1.5 for "early"-types and $b=0.7$ 0.9 for "late"-types with respect to CDM with $\sigma_8=0.9$ (computed semi-analytically using the light-cone average described before)

17**Kayo, Suto, Fukugita, Nakamura, et al. (2003)**

Previous predictions from SPH simulations with simulations with "galaxy " formation formation

Simulated "galaxies" formed earlier are more strongly biased m. **Recently formed** galaxies preferentially avoid high-density regions

Quite consistent with the morphology dependent galaxy bias derived from the recent SDSS DR1 !

Yoshikawa, Taruya, Jing & Suto (2001)

Outline of the talk Outline of the talk

- **A** brief overview of the "evolution of simulations " of large-scale structure **Results from recent analyses of the Results from recent analyses of the** SDSS (Sloan Digital Sky Survey) galaxy distribution **Example 1 Searching for cosmic missing baryon via oxygen emission lines baryon via oxygen emission lines**
- **. Density profiles of dark matter halos**

Where are the baryons ? Where are the baryons ? cosmic baryon budget cosmic baryon budget

Fukugita, Hogan & Peebles ApJ 503 (1998) 518

The observed baryons in the present universe amount merely to 10 50 of the nucleosynthesis prediction **Four phases of cosmic baryons Four phases of cosmic baryons Dave et al. ApJ 552(2001) 473**

- **Condensed: Condensed:** ^δ**>1000, T<10 >1000, T<10 5 K** F \blacksquare Stars + cold intergalactic gas
- **Diffuse: Diffuse:** ^δ**<1000, T<10 <1000, T<10 5 K**
	- **E** Photo-ionized intergalactic medium
		- F **Ly** absorption line systems
- **Hot: T>10 7 K**

E X-ray emitting hot intra-cluster gas

 Warm -hot: 10 5K<T<10 7 K

E Warm-hot intergalactic medium (WHIM)

Large-scale structure traced by missing baryons

Λ**CDM SPH @ z=0N=1283** :**DMN=1283 :gas (Yoshikawa et al. 2001) c.f., "Cosmic baryon budget" (Fukugita, Hogan & Peebles 1998)**

Warm/Hot Intergalactic Medium (WHIM)

WHIM as cosmic missing baryons WHIM as cosmic missing baryons

- \blacksquare ~40% of the total cosmic baryons may exist as Warm-Hot Intergalactic Medium (WHIM) with 105K<T<107K
- e. **NHIM** is supposed to distribute diffusely along filamentary structures connecting nearby clusters/ groups of galaxies
- **Direct detection of WHIM is difficult**
	- \blacksquare OVI absorption line systems in UV (1032Å, 1038Å doublets) doublets)
	- \blacksquare OVII (574.0 eV) and OVIII (653.6 eV) absorption line systems in X-ray spectra of background QSOs
	- $\overline{}$ \blacksquare Bumpy features in Soft X-ray background spectrum

Emission lines of Oxygen in WHIM

OVII (561eV, 568eV, 574eV, 665eV) , OVIII (653eV)

\blacksquare Why oxygen emission lines ?

- \blacksquare Most abundant other than H and He
- **E** Good tracers of gas around $\mathsf{T}{=}\,10^6$ $\,$ $\,10^7$ K
- **No other prominent lines in** E=500-660eV
- **Not restricted to regions towards** background QSOs

systematic WHIM survey systematic WHIM survey

Oxygen lines

Requirements for detection

Good energy resolution to identify the emission lines from WHIM at different redshifts

∆E<5eV X-ray calorimeter using superconducting TES (Transition Edge Sensor)

 \blacksquare **Example Field-of-view and effective area for survey**

 \blacksquare S_{eff} = 100cm², Ω=1deg² a-stage reflection telescope p. **Angular resolution is not so important (but useful in** removing point source contaminations)

$$
\theta \approx 1^{\circ} \left(\frac{600 \, h^{-1} \mathrm{Mpc}}{D} \right) \left(\frac{L}{10 \, h^{-1} \mathrm{Mpc}} \right)
$$

Comparison with other missions

Light-cone output from simulation

- Cosmological SPH simulation in $\Omega_{\rm m}$ =0.3, Ω_{Λ} =0.7, σ_8 =1.0, and h=0.7 CDM with N=128³ each for DM and gas (Yoshikawa, Taruya, Jing, & Suto 2001)
- Light-cone output from z=0.3 to z=0 by stacking 11 simulation cubes of (75h \cdot 1Mpc)³ at different z ■ 5° × 5° FOV mock data in 64x64 grids on the sky ■ 128 bins along the redshift direction (Δ z=0.3/128)

Surface brightness

Creating Mock spectra from light-cone output

p. For a given exposure time,

- \mathcal{L} convolve the emissivity according to gas density and temperature in (5 $^{\circ}$ /64) $^{\circ}$ pixels over the lightcone
- \blacksquare Add the Galactic line emission (McCammon et al. 2002)
- **E** Add the cosmic X-ray background contribution (power-law+Poisson noise)

p. Then statistically subtract the Galactic emission and the CXB and obtain the residual spectra for $\Delta \mathsf{E}{=}\mathsf{2}\text{eV}$ resolution.

Simulated spectra: region A

12x12 pixels (0.88 deg 2) Texposure=3x10 5sec

Simulated spectra: region D

Temperature [K]

overdensity

 $10⁶$ 10^{9} 10^{t} $10⁵$ 10^{2} 10 $\begin{bmatrix} \frac{1}{2} \pi \pi^2 / 2 \pi^2 \\ \frac{1}{2} \pi^2 / 2 \pi^2 \\ \frac{1}{2} \pi^2 / 2 \pi^2 \\ \frac{1}{2} \pi^2 / 2 \pi^2 \pi^2 \end{bmatrix}$ Ω ed -10^{-11} m^{10-15} 0.25 Ω 0.05 0.1 0.15 0.2 α

redshift

4x4 pixels (0.098 deg 2) Texposure=10 6sec

Feasibility of dedicated X-ray mission to search for missing baryons via Oxygen emission lines

astro-ph/0303281 PASJ(2003) October issue, in press

Univ of Tokyo: *K. Yoshikawa K. Yoshikawa Y.Suto***ISAS:** *N. Yamasaki K. Mitsuda***Tokyo Metropolitan Univ.:** *T. Ohashi* **Nagoya Univ.:** *Y. TawaraA. Furuzawa*

Outline of the talk Outline of the talk

- **A** brief overview of the "evolution of simulations " of large-scale structure
- **Results from recent analyses of the** SDSS (Sloan Digital Sky Survey) galaxy distribution
- **E** Searching for cosmic missing baryon via oxygen emission lines
- **<u>Density profiles of dark matter</u> halos**

Why density profiles of dark halos ? Why density profiles of dark halos ?

Example 1 Interest: What is the final state of the cosmological self final state of the cosmological selfgravitating system ? gravitating system ?

- F **E** forget cosmological initial conditions?
- F **E** keep initial memory somehow?
- **Practical importance: Practical importance: testing testing cosmology and/or nature of dark cosmology and/or nature of dark matter**

F \blacksquare galactic rotation curve, gravitational lensing **EX-ray/SZ observations of clusters** F \blacksquare modeling the dark matter clustering

NFW universal density profile NFW universal density profile

Rotation curves of DM dominated galaxies

dwarf spirals to giant low surface brightness galaxies indicate the central cores rather than cusps ! inconsistent with CDM simulations (?) (Moore et al. 1999; de Blok et al. 2000; Salucci & Burkert 2000)

Constraining halo central density Constraining halo central density profiles with gravitational profiles with gravitational lensing lensing Exatistics of QSO multiple images (Wyithe, Turner & Spergel 2001; Keeton & Madau 2001; Li & Ostriker 2001; Takahashi & Chiba 2001) **STATE Arc statistics of clusters of galaxies Arc statistics of clusters of galaxies** (Bartelmann et al. 1998; Molikawa & Hattori 2001; Oguri, Taruya + YS 2001, Oguri, Lee + YS 2003) **Time-delay statistics of QSO multiple images** (Oguri, Taruya, YS + Turner 2002) *generally favor a steep cusp (generally favor a steep cusp (*α~ -*1.5)*

Self-interacting dark matter?

- **E** Collisionless dark matter
	- Г **Exercise reproduces nicely the observed large-scale** structure of the universe (r 1Mpc)
	- **problems on smaller scales (r<1Mpc) problems on smaller scales (r<1Mpc)**

LSB rotation curves, soft core in CL0024+1624, prediction of a factor of ten more subhalos than observed in the Local Group

Required scattering cross section for self interacting dark matter

$$
(mn)\frac{\sigma}{m}\ell = 1 \quad \Rightarrow \quad \frac{\sigma}{m} = 2 \text{cm}^2 / g \left(\frac{10^4 \rho_{\text{crit}}}{\rho_{\text{center,cl}}} \right) \left(\frac{1 \text{Mpc}}{\ell} \right)
$$

Are Dark Halos Spherical ? Are Dark Halos Spherical ?

An improved model for dark matter halo: **triaxial triaxial universal density profile universal density profile**

Isodensity of a cluster-scale halo

$$
\rho(R) = \frac{\delta_c \rho_{crit}}{(R/R_s)^{\alpha} (1 + R/R_s)^{3-\alpha}}
$$

$$
R^2(\rho) = \frac{X^2}{a^2(\rho)} + \frac{Y^2}{b^2(\rho)} + \frac{Z^2}{c^2(\rho)}
$$

 Non-spherical effects have several important implications for X-ray, Sunyaev-Zel'dovich, and lensing observations **Jing & Suto, ApJ, 574 (2002) 538**

Lensed Arcs in Galaxy Clusters

Cluster of galaxies distort the images of background galaxies by gravitational lensing

(lensed) arcs

~30 giant arcs are observed so far

Hammer et al. (1997)

Comparison with observed statistics Comparison with observed statistics

Previous model predictions are known to be significantly smaller than the observed number of lensed arcs (Luppino et al. 1999)

More realistic modeling of dark halos from simulations (inner slope of $\alpha\hspace{-0.08cm}=\hspace{-0.08cm}1.5$ and non-sphericity) reproduces the observed frequency of arcs. (Oguri, Lee + YS 2003)

Density profile of collisionless CDM halos: still confusing CDM halos: still confusing

High -resolution simulations resolution simulations universal central cusp → 1 → 1.5

Navarro, Frenk & White (1996) Fukushige & Makino (1997, 2001) Moore et al. (1998) Jing & Suto (2000)

Theory Central cusp or softened core ? Dependent on initial condition ?

Sver & White (1998), Weinberg & Katz (2002)

Observations ObservationsCore from dwarf galaxies Cusp from lensing

?

Syer & White (1998), Weinberg & Katz (2002) [2003] **Oguri** (2003), **Oguri, Lee & Suto** (2003) 44 **Moore et al. (1999), de Blok et al. (2000) Salucci & Burkert (2000)**

Unsolved issues for LSS simulations Unsolved issues for LSS simulations

Clustering: Clustering:

- **Higher-order clustering statistics beyond 2pt correlation**
- **E** evolution of bias: "galaxies" at higher redshifts

Halo density profile: Halo density profile:

- **Consistent picture for the density profile from theory,** observations and simulations ?
- **Non-spherical modeling and substructure**

From dark halos to luminous objects: From dark halos to luminous objects:

- **Criteria of formation of luminous objects**
- \blacksquare Non-gravitational effects inside dark halos: cooling and heating, star/galaxy formation, preheating, supernova feedback, etc.