Looking into CDM predictions: Looking into CDM predictions: from large from large- to small to small -scale structures scale structures

SPH simulation i n Λ**CDM (Yoshikawa et al. 2001)**

Institute for Cosmic-Ray Research October 2, 2003, Kashiwa, Japan Yasushi Suto 75h⁻¹Mpc Department of Physics The University of Tokyo

Outline of the talk Outline of the talk

- 1. Convergence of cosmological N-body simulations
- 2. Clustering of the 2dF and the SDSS galaxies
- 3.Density profiles of dark matter halos
- 4. Estimate of the value of $\sigma_{\scriptscriptstyle 8}$ from cluster $\,$ abundances
- 5. Searching for cosmic missing baryon via oxygen emission lines (DIOS: Diffuse Intergalactic Oxygen Surveyor)

Part 1: Part 1: Convergence of cosmological N-body simulations

CDM transfer function CDM transfer function

Comparison of T(k)

Boltzmann codes

Existing N Existing N-body/SPH simulations (in body/SPH simulations (in Λ**CDM)**

Well-known exponential evolution of "N" in cosmological N in cosmological N-body simulations body simulations

Two-point correlation functions from different simulations from different simulations

The Peacock-Dodds fitting formula, Virgo simulation and Jing's simulation agree within ±**10% for 0.05h-1Mpc < r <20h-1Mpc**

Correlation functions of halos on the light-cone

Light-cone out put from Hubble volume LCDM simulation

VS

Peacock-Doddsfiiting formula +Halo bias +(redshift distortion) + average over lightcone

Ham Hamaana, Yoshida, Suto na, Yoshida, Suto & Evrard & Evrard (2001) (2001)

Finite mass resolution effect in cosmological N cosmological N -body simulations body simulations

discreteness.

Ham ana, Yoshida & Suto: ApJ 568(2002)455

Universal mass function of dark halos $n(\sigma^{-1}(M)) = A \exp[-|\ln \sigma^{-1}(M) + B|^{\varepsilon}]$ $-|\ln\sigma^{-1}(M)+B|$ − −

Figure 7. The FOF(0.2) mass functions of all the simulation outputs listed in Table 2. Remarkably, when a single linking length is used to identify halos at all times and in all cosmologies, the mass function appears to be invariant in the $f - \ln \sigma^{-1}$ plane. A single formula (eqn. 9), shown with a dotted line, fits all the mass functions with an accuracy of better than about 20% over the entire range. The dashed curve show the Press-Schechter mass function for comparison.

Figure 8. The residual between the fitting formula, eqn. 9, and the $FOF(0.2)$ mass functions for all the simulation outputs listed in Table 2. Solid lines correspond to simulations with $\Omega = 1$, short dashed lines to flat, low Ω_0 models, and long dashed lines to open models.

Dark matter virial theorem: halo mass - velocity dispersion relation for different mass definitions

In contrast to a simple theory, numerical sim ulations prefer halos defined by overdensit y of 200 with respect the critical mean density independently of the background cosmology (puzzling…)

Dark halo mass functions Dark halo mass functions

 Claim : Dark halos should be

defined by cri tical SO(200), i.e., spherically averaged density exceeds 200 times the c ritical d e n sity (independently of the background cosmology). \blacksquare **Then the resulting mass functions are "universal". What's wrong with the conventional spherical infall model prediction ? Why universal scaling is desired (even if t he s caling itself is surprising) ?**

What is *the* definition of galaxy clusters ?

Apparently they are closely related, but we desperately need to understand better what we mean by clusters

Part 2:

Clustering of the 2dF and Clustering of the 2dF and the SDSS galaxies

Ω**m from power spectrum of 2dFGRS**

Peacock (2003) astro-ph/0309240

luminosity dependence of w(r ^p) from SDSS volume-limited galaxy sample

E early-types are more strongly biased than late-types **n** for late-types, luminous galaxies show stronger clustering **Theoriearly-types, the clustering amplitudes are fairly** independent of the absolute luminosities of galaxies

Kayo et al. (2003)

Jet

Nayo

 \overline{a} .

 (2003)

Luminosity and color dependence of w(r p) from SDSS volume-limited galaxy sample

red/luminous galaxies show stronger clustering n the slope of the red-galaxy correlation is steeper

Morphology-dependence of galaxy bias from SDSS magnitude-limited sample

early-type average late-type

$$
b \equiv \sqrt{\frac{\xi(galaxies)}{\xi(\Lambda CDM)}}
$$

 Galaxy bias is fairly scale-independent

 Clear morphology dependence with respect to CDM (computed semianalytically over light-cone)

Previous predictions from SPH simulations with simulations with "galaxy " formation formation

Simulated "galaxies" formed earlier are more strongly biased m. **Recently formed** galaxies preferentially avoid high-density regions

Quite consistent with the morphology dependent galaxy bias derived from the recent SDSS DR1 !

Yoshikawa, Taruya, Jing & Suto (2001)

Three-point correlation functions in redshift space

 \blacksquare Q $\sim 0.5 - 1.5$ **Neak dependence** on scale of triangles (hierarchical ansatz is valid) **Neak dependence** on Luminosity ■Weak dependence on Morphology **equilateral triangles**

Comparison with previous work on three-point correlation functions

Jing & Börner (1998) LCRS: 20,000 galaxies

21**SDSS: 90,000 galaxies Kayo et al. (2003)**

Comparison with theoretical predictions in real space

Lines: model (Takada & Jain 2003) Symbols: SDSS results (Kayo et al. 2003)

• Very different behaviour, but maybe mostly due to the redshift-space distortion effects that theoretical models are not yet successful in incorporating properly

Redshift-space distortion from simulations

 N-body simulations imply a significant degree of redshiftspace distortion

Matsubara & Suto (1994)

Topology of SDSS galaxy distribution

24Topology of SDSS galaxy distribution (measured with Minkowski Functionals) is consistent with those originated from the primordial random-Gaussian field in Λ CDM (Hikage, Schmalzing, Buchert, Suto et al. 2003 PASJ).

SDSS data represent a fair sample of the universe ?

Hikage et al. (2003)

■ Difference of MFs for two independent regions of SDSS **Two regions in Sample 12 barely converge within the error bars from Mock samples**

Part 3: Density profiles of dark matter halos

Importance of high-resolution simulations

I low mass/force resolutions shallower potential than real artificial disruption/overmerging artificial disruption/overmerging (especially serious for small systems) (especially serious for small systems)

 $\varepsilon = 1$ **kpc**

$$
\epsilon = 7.5 \mathrm{kpc}
$$

Moore (2001)

central central 500kpc region of a region of a simulated **halo in halo in SCDM**

Profiles in higher-resolution simulations

variation of the halo density profiles variation of the halo density profiles

a. **Density profiles of collisionless CDM halos are well** approximated by the following expression, but not necessarily approximated by the following expression, but not necessarily approximated by the following expression, but not necessarily universal v

$$
\rho(r) = \frac{\delta_c \rho_{crit}}{(r/r_s)^{\alpha} (1+r/r_s)^{3-\alpha}} \quad \alpha \approx 1.5
$$

More recent simulations I:

More recent simulations II:

Claim: **E** Claim: hydrodynamic/gas effect results in the compression **of the halo density profiles at large radius (?)**

Inner profiles of clusters from lensing analysis

Sand, Treu, Smith & Ellis (2003)

Time -delays in QSO multiple images to probe the halo density profile

Tentative applications to 4 lens systems Tentative applications to 4 lens systems

 Observed time Observed time delays generally prefer a steeper **central cusp** ∝**r -1.5** m. **needs future statistical study statistical study**

> **1.5 Oguri, Taruya, Suto & Turner (2002) & Turner (2002)**

Comparison with observed arc statistics

Previous model predictions are known to be significantly smaller than the observed number of lensed arcs (Luppino et al. 1999)

More realistic modeling of dark halos from simulations (inner slope of $\alpha\hspace{-0.08cm}=\hspace{-0.08cm}1.5$ and non-sphericity) reproduces the observed frequency of arcs. **Oguri, Lee + YS (2003)**

Density profile of collisionless CDM halos: still confusing CDM halos: still confusing

High -resolution simulations resolution simulations universal central cusp → 1 → 1.5

Navarro, Frenk & White (1996) Fukushige & Makino (1997, 2001) Moore et al. (1998) Jing & Suto (2000)

Theory Central cusp or softened core ? Dependent on initial condition ?

Observations ObservationsCore from dwarf galaxies Cusp from lensing

?

36 **Oguri (2003), Oguri, Lee & Suto (2003) Syer & White (1998), W Moore et al. (1999), de Blok et al. (2000) Salucci & Burkert (2000)**

Sver & White (1998), Weinberg & Katz (2002)

Part 4:

Estimate of the value of σ_{8} from cluster abundances

Mass fluctuation amplitude: σ 8

 WMAP (Λ**CDM)** \blacksquare $\mathsf{C_8}$ =0.9±0.1 **WMAP+ACBAR +CBI+2dFGRS +Ly** α **(** Λ**CDM)** σ **⁸=0.84** ±**0.04 Lensing** \blacksquare $\sigma_8 = 0.7 \sim 1.0$ **Cluster abundance**

σ **⁸=0.7 or 1.0 ???**

Scaled to Λ**CDM case with** Ω **^m=0.28**

Spergel et al. (2003)

$_{8}$ from cluster abundances and lensing

N.Bahcall: Physica Scripta T85(2000)32

Refregier et al. ApJ 572(2002)131

From mass to temperature of X-ray clusters

Fitting to the local temperature function Evrard (2003)

best fit:β**= (1.10** ± **0.07)** σ **85/3**

from the observed n(>T) by Markevitch (1998) and the Hubble volume simulations (Evrard et al. 2002)

+ virial theorem (^σ**DM-M) mass scale calibration (c=5 NFW)**

sun $5/2$, **16** 15 **8** hM_{500}^tot (6 keV) $= (0.64 \pm .06)\sigma_s^{3/2} \times 10^{15} M$

What is the absolute mass scale of cosmic structure ?

Evrard (2003)

σ**8 from the observed TF of X-ray clusters**

 $\Omega_0 = 0.3$, $\lambda_0 = 0.7$, h=0.7 CDM assumed (Shimizu et al. 2003)

A puzzling (?) summary on ^σ**8 from cluster abundance**

- •• Recent mass ftn + virial th^m calibrations allow precise calculation of the expected number of clusters as a function of their dark matter gravitational potential depth, n $(\sigma_{\sf DM}^{-2}$)
- \bullet • Matching the observed temperature ftn, $n(\mathcal{T}_\chi)$, requires that the ratio of specific energies in DM and ICM gas be β = $(1.10{\pm}$ $0.07) \sigma_{8}$ 5/3

t wo scenarios for `standard' Λ**CDM (** Ω **^m=0.3,** Ω ^Λ**=0.7)**

- 1) high normalization: σ₈=1.0 ± 0.1 β=(1.1± 0.2)
	- + ICM thermal energy consistent with gravitational heating (+mild PH) + galaxies velocity dispersion matches that of dark matter
- 2) <u> low normalization</u>: σ₈=0.7 ± 0.1 β=(0.61± 0.15)
	- ICM must be heated to 1.8 times level of gravitational infall
	- galaxies must be <u>hotter</u> than dark matter by a similar factor (in σ^2)

Low σ_8 normalizations create problems for cluster energetics!

Enhanced heating model at high-z

 $\mathbf{\mathcal{E}_{RG}}$ =0 for simplicity $\mathcal{E}_{\sf SN} = {\sf 0.3 \;\; (z\!<\!7) \;\; \text{and} \;\mathcal{E}_{\sf SN}} = {\sf 1, \;\;2, \,\;4 \;\text{or}\;\;5 \;\; (z\!>\!7) }$ **Shimizu et al. (2003)**

Part 5: Searching for cosmic missing baryon via oxygen emission lines baryon via oxygen emission lines

DIOS Diffuse Intergalactic Oxygen Surveyor

DIOS: Diffuse **I**ntergalactic **O**xygen **^S**urveyor **A Japanese proposal of a dedicated X-ray mission to search for missing baryons** ■ A dedicated satellite with cost < 40M USD to fill the gap between Astro-E2 (2005) and NeXT (2010?). Launch at Japan in 2008 (?). **Unprecedented energy spectral resolution** ∆E=2eV in soft X-ray band (0.1-1keV) **Aim at detection of (20-30) percent of the total**

- cosmic baryons via Oxygen emission lines
	- \blacksquare ∆E=2eV, \enspace S_{eff} Ω=100 [cm² deg²]
	- **flux limit = 6x10⁻¹¹ [erg/s/cm²/str]**
- PI: Takaya Ohashi (Tokyo Metropolitan Univ.)

Light-cone output from simulation

- Cosmological SPH simulation in Ω_m=0.3, Ω_{Λ} =0.7, σ_8 =1.0, and h=0.7 CDM with N=128³ each for DM and gas (Yoshikawa, Taruya, Jing, & Suto 2001)
- **Light -cone output from z=0.3 to z=0 cone output from z=0.3 to z=0** by stacking 11 simulation cubes of (75h⁻¹Mpc) 3 at different z ■ 5° × 5° FOV mock data in 64x64 grids on the sky Γ ■ 128 bins along the redshift direction (∆z=0.3/128)

Surface brightness on the sky

Metallicity models Oxygen enrichment scenario in IGM galaxy wind

Metallicity of WHIM is quite uncertain Adopted models for metallicity distribution

Type-II SNe merging metal pollution in IGM

Model I : uniform and constant $Z = 0.2 Z_{solar}$ **Model II** : uniform and evolving $Z = 0.2 Z_{solar}(t/t_0)$

Model III : density-dependent (Aguirre et al. 2001)

 $Z = 0.005 Z_{solar} (\rho/\rho_{mean})^{0.33}$ (galactic wind driven)

50**Model IV** : density-dependent (Aguirre et al. 2001) $Z = 0.02 Z_{solar} (\rho/\rho_{mean})^{0.3}$ (radiation pressure driven)

Simulated spectra: region A

0.94°×**0.94** ° **= 0.88 deg 2**

Texposure= 3x10 5sec

51

Simulated spectra: region D

19'x19' = 0.098 deg 2 Texposure=10 6sec

Physical properties of the probed baryons

Each symbol indicate the temperature and the over-density of gas at each simulation grid (4x4) smoothed pixels over the sky and Δ z=0.3/128)

S x > 3x10-¹⁰ [erg/s/cm 2/sr] S x > 6x10-¹¹ [erg/s/cm 2/sr] $\overline{\textbf{X}}$ $\mathbf{S}_{\mathbf{x}} > \mathbf{10^{-11}} \ [\mathrm{erg}/\mathrm{s}/\mathrm{cm}^2/\mathrm{sr}]$

Expected fraction of WHIM detectable via Oxygen emission lines (in principle)

Our proposed mission (flux limit = $6x10^{-11}$ [erg/s/cm²/str]) will be able to detect (20-30) percent of the total 30) percent of the total cosmic baryons via Oxygen emission lines **in principle in principle**.

Detectability of Warm-Hot Intergalactic Medium via Oxygen emission lines

- \blacksquare Mock spectra from cosmological SPH simulation
- **With our proposed mission (20-30) percent of the total cosmic baryons will be detected of the total cosmic baryons will be detected via Oxygen emission lines** in principle.
	- $\textcolor{blue}{\blacksquare}$ ∆E=2eV, $\textcolor{red}{\mathsf{S}_{\mathsf{eff}}}$ Ω=100 [cm 2 deg 2]
	- \blacksquare flux limit = 6x10⁻¹¹ [erg/s/cm²/str]

Π **Things remain to be checked**

- **D** Validity of the collisional ionization equilibrium ?
- \blacksquare How to properly identify the oxygen lines from the background/noises in reality ? background/noises in reality ?

DIOS: Japanese proposal of a dedicated X-ray mission to search for missing baryons

astro-ph/0303281 PASJ(2003) October issue, in press

Univ of Tokyo: *K. Yoshikawa K. Yoshikawa Y.Suto***ISAS:** *N. Yamasaki K. Mitsuda***Tokyo Metropolitan Univ.:** *T. Ohashi* **Nagoya Univ.:** *Y. TawaraA. Furuzawa*