宇宙論の来し方行く末

須藤 靖

東京大学 大学院理学系研究科 物理学専攻・初期宇宙研究センター

2000年4月5日(水) (日本天文学会春季年会)

Contents

1	宇宙論の"進歩"	2	
2	観測的宇宙論研究のゴール		
3	宇宙論研究を支える素朴な疑問	4	
4	来し方4.1宇宙の年齢: H_0 の決定4.2銀河系内ダークマターの正体:重力マイクロレンズ4.3宇宙の3次元地図:銀河・QSO赤方偏移サーベイ4.4宇宙定数は存在するか?:超新星サーベイ4.5ダークマターマッピング:弱い重力レンズ4.6原始密度ゆらぎの再構成:CMB温度地図	5 6 9 11 14 16	
5	行く末: 精密宇宙論 ???	19	
6	まとめと展望	21	

1 宇宙論の"進歩"

E.Hubble (1929)

遠方天体の距離を1桁過小評価 (*h* = 5.58 !)。 しかし、結論(ハッブルの法則)は変らない。

Figure 1: ハッブルの用いた距離—後退速度関係に、彼の推測した 比例関係 (h = 5.58!) を実線で、現在の推定値 (h = 0.7)を 破線で描き入れたもの。

G.Gamow (19??) 10^{10} は 10^{-10} の間違い。しかし、結論は変らない。 A.A.Penzias & R.W.Wilson (1965) $T_{\text{CMB}} = 3.5^{\circ} \pm 1.0^{\circ}\text{K}$ J.C.Mather et al. (1999) $T_{\text{CMB}} = 2.725 \pm 0.002\text{K}$ W.Freedman (1999) $h = 0.71 \pm 0.03$ (統計誤差) ± 0.07 (系統誤差)

2 観測的宇宙論研究のゴール

宇宙論的 観測データ

↓ 理論モデル・計算機シミュレーション

宇宙の多様性の物理的理解

第一世代の天体: QSO、Pop.III stars 階層構造: 星・銀河・銀河団・超銀河団 物質密度と分布: バリオン・ダークマター 元素の起源: QSO吸収線系、銀河・銀河団 宇宙の熱史 QSO、原始銀河・銀河団

宇宙の初期条件の再構築

宇宙論パラメータの決定 原始密度揺らぎのスペクトル 原始密度揺らぎの確率分布関数

"観測データが限られている場合稀な天体ほど先に発見される"→天文学的興味からは重要だが、、、 宇宙論はごく平均的(地味)なものを対象とする 統計的均質性・信頼性・観測領域サイズがより重要 ⇒ 宇宙のサーベイ観測

宇宙の3次元地図:銀河・QSOの赤方偏移サーベイ 宇宙のダークマター分布:重力レンズサーベイ 宇宙の距離測量地図: 超新星サーベイ 宇宙の温度地図:マイクロ波背景輻射のゆらぎ

3 宇宙論研究を支える素朴な疑問

宇宙の誕生・起源

原始密度ゆらぎの関数形、振幅、 Ω_0, λ_0

マイクロ波背景輻射 (CMB) 温度ゆらぎ地図

宇宙の質量(密度)

 $\Omega_0 = 1 ?$

天体の力学的質量測定、ダークマターマッピング 宇宙を占める物質・元素の組成

 $\Omega_0 > \Omega_b$?, $\lambda_0 > 0$?

太陽近傍の元素組成、QSO吸収線の観測

宇宙の年齢

 $H_0 = 50 \text{km/sec/Mpc}$? $H_0 = 100 \text{km/sec/Mpc}$? セファイド型変光星の較正、大マゼラン星雲ま での距離、近傍銀河の距離 (ハッブル宇宙望遠鏡 キープロジェクト)

宇宙の果て

最も遠方(過去)の天体は? (現在の記録: $z = 5.58 \text{ m} QSO, z \sim 6 \text{ m} \partial \Omega$) ハッブルディープフィールド、すばるディープフィールド、遠方銀河・QSOの分布地図

宇宙の未来

 $\Omega_0 = 1 ? \lambda_0 > 0 ?$

宇宙論パラメータの決定(超新星サーベイ、CMB)

もちろんこのような問題意識はいつの時代にも存在 したが、観測データに基づく定量的検証が可能にな ったのは、いずれもわずかここ数年のことである。

4 来し方

4.1 宇宙の年齢: *H*₀の決定

HST(ハッブル宇宙望遠鏡)の観測から、18個の銀河の距離を求め、ハッブル定数を10パーセントの精度で決定する。

 $H_0 = 71 \pm 3$ (統計誤差) ± 7 (系統誤差) km/s/Mpc 系統誤差: $\pm 5(LMC) \pm 3([Fe/H]) \pm 3(global) \pm 4$ (photometry)

方法	H ₀ の推定値
近傍銀河のセファイド	$\textbf{73} \pm \textbf{7} \pm \textbf{9}$
表面輝度ゆらぎ	$69 \pm 4 \pm 6$
タリーフィッシャー関係	$71 \pm 4 \pm 7$
$\mathbf{D}_N-\sigma$ 関係	$78 \pm 7 \pm 8$
Ia 型 超新星	$68 \pm 2 \pm 5$
II型 超新星	$73 \pm 7 \pm 7$
平均	$71\pm 3\pm 7$

4.2 銀河系内ダークマターの正体:重力マイクロレンズ

銀河系八ロー内に存在する低質量天体 (MACHO:MAssive Compact Halo Objects) が遠方の星の前を横切る際、重力 レンズ現象によって、(典型的には一ヶ月程度)、その星が増光 する。マゼラン星雲の星の系統的モニター観測から、実際に MACHO が検出され、その存在量が推定されている。

Figure 3: MACHO サーベイフィールド (左上: LMC, 右上: SMC) とレンズ候補の位置(下)

最初に検出された MACHOの光度曲線

Figure 4: MACHO 1st event (Alcock et al. Nature 365, 1993, 621)

Figure 6: MACHOの1992年以来5.7年にわたるLMC観測 (11.9 million stars monitoring) で、 $13 \sim 17$ の重力レンズ候補を検出。MACHO 質量は $0.15 \sim 0.9 M_{\odot}$ 、銀河のハローに占める質量比は20% (8% ~ 50%)。 (Alcock et al. astro-ph/0001272)

4.3 宇宙の3次元地図:銀河・QSO赤方偏移サーベイ

Figure 7: 2dFサーベイは、口径4mのアングロオースト ラリア天文台望遠鏡に取 り付けられた2dFと呼ば れる多天体分光器(400天体の同時分光が可能)を 利 用した英豪共同の銀河・クェーサー観測プロジ ェクト。b_Jバンドで19.5等級より明るい銀河25万 個と、Rバンドで21等級より明るい銀河1万個、 18.25 < b_J < 20.85のクェーサー2万5千個の分光観 **測を行う。1996年10月にファーストデータ、1997** 年10月から多天体分光サーベイ開始。

Folkes et al. astro-ph/9903456, Boyle et al. astro-ph/0003206 http://www.mso.anu.edu.au/~rsmith/QSO_Survey/qso_surv.html http://www.mso.anu.edu.au/2dFGRS/

Figure 9: 2dF 銀河サーベイの空間分布 (2000年1月時点)。

4.4 宇宙定数は存在するか?: 超新星サーベイ

Ia 型超新星は、その最大光度がほぼ一定であることが知られ ており、 いわゆる標準光源である。高赤方偏移にある 銀河 の中の超新星を見つけて、その銀河までの距離を決めること で、ハッブ ル定数や宇宙論パラメータを決定することを目的 とする。

Supernova Cosmology Project と High-Z SN Search の2つの観測グループがあり、どちらも0 でない宇宙定数の存 在を主張している(しかも、空間曲率が0、つまり $\Omega_0 + \lambda_0 = 1$ 、 を支持していると解釈できる)。

4.4.1 Supernova Cosmology Project (http://www-supernova.lbl.gov)

ローレンスバークレー研究所を中心とした超新星サーベイ。

Figure 10: Supernova Cosmology Project 観測概略

4.4.2 High-Z SN Search オーストラリア ストロムロ山天文台、ハーバー ド大学などを中心とした超新星サーベイグループ。 (http://cfa-www.harvard.edu/cfa/oir/Research/supernova/HighZ.html)

The High-Z SN Search

Our Quest: To Measure the Change of the Rate of Expansion of the Universe

Figure 11: High-Z SN Search チームの検出した超新星のHST 画像例

4.4.3 超新星サーベイによる宇宙定数 λ₀ の推定

Figure 12: Supernova Cosmology Project (左; Perlmutter et al. ApJ 517, 1999, 565), High-Z SN Search (右; Garnavich et al. ApJ 509, 1998, 74)

4.5 ダークマターマッピング:弱い重力レンズ

手前の銀河団や宇宙の大構造を通過する際に重力レンズ効果 を受け、遠方銀河の像が系統的に歪んでしまう現象。これを利 用した銀河団質量の決定はすでに数多くなされているが、先 月4つのグループがほぼ同時に宇宙の大構造に起因する効果 を初めて検出したと発表した。

Figure 13: 上:弱い重力レンズの概念図 (Wittman et al. astroph/0003014)。下:HST による銀河団 A2218 のまわりの弱い 重力レンズを受けた銀河の画像

宇宙の大構造に起因する弱い重力レンズの検出

this work: Kaiser, Wilson & Luppino (astro-ph/0003338) WTK+: Wittman et al. (astro-ph/0003014) vWME+: van Waerbeke et al. (astro-ph/0002500) BRE: Bacon, Refregier, & Ellis (astro-ph/0003008)

Figure 14: 4 つのグループによって検出された弱い重力レンズの 振幅 (cosmic shear)の比較。点線は、 $\Omega_0 = 0.3$, $\lambda_0 = 0.7$, $\Gamma = 0.25$ モデルで、銀河がz = 2(上)とz = 1(下)にあった 場合の理論予言。

- 4.6 原始密度ゆらぎの再構成:CMB温度地図
- 4.6.1 1992 年温度ゆらぎ発見: COBE 以前とその後

Figure 15: COBE によるマイクロ波輻射温度ゆらぎ全天地図

4.6.2 CMB 温度ゆらぎ研究の来し方行く末

Figure 16: CMB 温度角度相関関数の来し方(上)行く末(下)

CMB 温度ゆらぎの角度相関関数のピーク位置は、宇宙の曲率、 $\Omega_K \equiv \Omega_0 + \lambda_0 - 1$ に最も強く依存し、幾何学的テストに最適。

Figure 18: BOOMERANG/NA から得られた $\Omega \equiv \Omega_0 + \lambda_0 \sigma$ likelihood function(左)。及びlikelihood contour (右). ピーク値の0.32, 0.05, 0.01の等高線。三角がベストフィット。 (Melchiorri et al. astro-ph/9911445)

2つのマイクロ波背景輻射観測衛星 MAP (Microwave Anisotropy Probe: 2000年11月7日 打 ち上げ予定)とPLANCK (2007年打ち上げ予定) のデータ解析から推定される宇宙論パラメータの誤 差予想(Tegmark et al. astro-ph/9905257)

	Foregrounds		inds	
観測衛星	パラメータ	None	Known	Unknown
MAP	$\ln(\Omega_m h^2)$	0.080	1.208	1.66
	$\ln(\Omega_b h^2)$	0.051	1.201	2.01
	$m_{\nu} \; (\mathrm{eV}) \propto \Omega_{\nu} h^2$	0.57	1.078	2.06
	$n_S(k_{ m fid})$	0.041	1.264	2.63
	Ω_{Λ}	0.091	1.230	1.74
	au	0.018	1.90	3.33
	T/S	0.16	1.309	1.86
Planck	$\ln(\Omega_m h^2)$	0.016	1.056	1.160
	$\ln(\Omega_b h^2)$	0.0094	1.028	1.165
	$m_{\nu} \; (\mathrm{eV}) \propto \Omega_{\nu} h^2$	0.24	1.032	1.075
	$n_S(k_{ m fid})$	0.0076	1.109	1.303
	Ω_{Λ}	0.022	1.051	1.151
	au	0.0036	1.69	1.96
	T/S	0.0073	4.04	6.58

 \Downarrow

1%以内の精度での宇宙論パラメータの決定

夢?? 悪夢??

6 まとめと展望

ハッブル定数: $h = 0.71 \pm 0.07$

HST キープロジェクトが終了し、近傍宇宙から のハッブル定数の値はこれ以上決まらないであろ う。今後は、距離尺度の原点を与えるセファイド の較正(特にLMCまでの距離)や、遠方宇宙の 観測から直接ハッブル定数を決める(超新星、SZ 効果)ことが重要となる。

密度ゆらぎの振幅: $\sigma_8 \approx 1 \pm 0.5$

天体の空間分布とダークマターの空間分布との 違い(バイアス)を理解することが重要。弱い重 カレンズ効果のサーベイが期待される。

質量密度パラメータ: $\Omega_0 = (0.1 \sim 0.4) \ll 1$

我々の宇宙が低密度(臨界密度以下)であるこ とはほとんど確実。バリオン質量密度に対する 制限と組み合わせると、バリオン以外のダークマ ターが存在すると考えることは自然。我々の銀河 系ハローには、MACHOが直接観測されている が、全質量には2割程度の寄与しかない。ダーク マターの直接検出が今後の最重要課題。

宇宙定数: $\lambda_0 > 0 \ (= 1 - \Omega_0 \sim 0.7)$?

超新星データの解釈は別としても、宇宙論的には 宇宙定数があるほうが好ましいのは事実。今後の 観測的進展は最も期待できる。

Γ 1.	11		•
Expanding	τne	expanding	universe

0-th order	ー様等方宇宙モデル
	(宇宙論パラメータ, Ω_0, λ_0, h の理解)
1st order	密度揺らぎの線形摂動論
	(宇宙の大構造、マイクロ波背景輻射)
2nd order	非線型重力進化
	(ダークマターの構造形成)
3rd order	バリオンガスの進化
	(第一世代天体と元素の起源)
4th order	銀河、星、惑星の形成と進化
	(光り輝く銀河宇宙の誕生)
M-th order	生命の起源・進化
	(宇宙論的生物発生学)
N-th order	知的生命体への進化、文化・文明・宗教
	(宇宙論的生物進化学)
∞	宇宙の終焉

良し悪しは別として、天文学研究の一つの潮流が" 宇宙論化"であることは否定できない。実際この方 向で今後10年から20年程度、新しい観測プロジ ェクトが目白押しで、我々が現在想像できないよう な新発見の洪水が確約されているといっても良い。 その成果が予想できるという意味で、いまやlow-risk low-return となった宇宙論にとどまらず、信頼性は 低いが新たな展開を生み出しうるようなserendipity に迅速に対応し、新しい学問分野の開拓へ結び 付けていくことが本質的である。