de Sitter wave function and Euclidean AdS

Yusuke Yamada

In cosmology, correlation functions are important observables. One can evaluate them e.g. within the in-in perturbation formalism or using wave functional(=path integral). The wave functional/path integral approach manifests the relation to the path integral in Euclidean AdS.
In this talk, I will review the relation between dS and EAdS path integral and discuss the subtlety of their relation. As I will show, the Bunch-Davies wave functional can be given by the analytic continuation of EAdS path integral, which can be evaluated by the technique used in AdS/CFT context.
Independently of the main topic, I will also review vacuum states in de Sitter QFT, if time allows. (It is unlikely, though. )

[1] D. Harlow, D. Stanford, arXiv:1104.2621
[2] D. Anninos, T. Anous, D. Z. Freedman, G. Konstantinidis, JCAP11(2015)048
[3] J. Maldacena, JHEP0305(2003)013

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2020-06-11 (木) 20:08:20 (312d)